Pinophyta

From Wikipedia, the free encyclopedia
  (Redirected from Conifers)
Jump to: navigation, search
"Conifer" redirects here. For other uses, see Conifer (disambiguation).
Pinophyta
Temporal range: Late Carboniferous – Recent
Snowfield Peak 8648s.JPG
Conifer forests, though comprising few species, cover vast areas, as in this forest in the Cascade Range of western North America.
Scientific classification
Kingdom: Plantae
(unranked): Spermatophyta
Division: Pinophyta
Class: Pinopsida
Orders and families

Cordaitales
Pinales
  Pinaceae—Pine family
  Araucariaceae—Araucaria family
  Podocarpaceae—Yellow-wood family
  Sciadopityaceae—Umbrella-pine family
  Cupressaceae—Cypress family
  Cephalotaxaceae—Plum-yew family
  Taxaceae—Yew family
Vojnovskyales
Voltziales

Synonyms

Coniferophyta
Coniferae

The conifers, division Pinophyta, also known as division Coniferophyta or Coniferae, are one of 12 extant division-level taxa within the Kingdom Plantae (Viridiplantae) and 10 within the extant land plants. Pinophytes are gymnosperms, cone-bearing seed plants with vascular tissue. All extant conifers are woody plants with secondary growth, the great majority being trees with just a few being shrubs. Typical examples of conifers include cedars, Douglas-firs, cypresses, firs, junipers, kauri, larches, pines, hemlocks, redwoods, spruces, and yews.[1] The division contains approximately eight families, 68 genera, and 630 living species.[2][3]

Although the total number of species is relatively small, conifers are of immense ecological importance. They are the dominant plants over huge areas of land,[4] most notably the boreal forests of the northern hemisphere,[1] but also in similar cool climates in mountains further south. Boreal conifers have many wintertime adaptations. The narrow conical shape of northern conifers, and their downward-drooping limbs, help them shed snow. Many of them seasonally alter their biochemistry to make them more resistant to freezing, called "hardening". While tropical rainforests have more biodiversity and turnover, the immense conifer forests of the world represent the largest terrestrial carbon sink, i.e. where carbon from atmospheric CO2 is bound as organic compounds.

They are also of great economic value, primarily for timber and paper production;[1][4] the wood of conifers is known as softwood.

Conifer is a Latin word, a compound of conus (cone) and ferre (to bear), meaning "the one that bears (a) cone(s)".

Evolution[edit]

The narrow conical shape of northern conifers, and their downward-drooping limbs, help them shed snow.

The earliest conifers in the fossil record date to the late Carboniferous (Pennsylvanian) period (about 300 million years ago),[5] possibly arising from Cordaites, a seed-bearing plant with cone-like fertile structures. This plant resembled the modern Araucaria. Pinophyta, Cycadophyta, and Ginkgophyta all developed at this time.[5] An important adaptation of these gymnosperms was allowing plants to live without being so dependent on water. Other adaptations are pollen (so fertilization can occur without water) and the seed, which lets the embryo be transported and developed elsewhere.[5]

Conifers appear to be one of the taxa that benefited from the Permian–Triassic extinction event.

Taxonomy and naming[edit]

The division name Pinophyta conforms to the rules of the ICBN, which state (Article 16.1) that the names of higher taxa in plants (above the rank of family) are either formed from the name of an included family (usually the most common and/or representative), in this case Pinaceae (the pine family), or are descriptive. In the latter case the name for the conifers (at whatever rank is chosen) is Coniferae (Art 16 Ex 2), which is also in widespread use. Older scientific names (no longer allowed) are Coniferophyta and Coniferales.

According to the ICBN, it is possible to use a name formed by replacing the termination -aceae in the name of an included family, in this case preferably Pinaceae, by the appropriate termination, in the case of this division -ophyta. Alternatively, "descriptive botanical names" may also be used at any rank above family. Both are allowed.

This means that if conifers are considered a division, they may be called Pinophyta or Coniferae (as a class they may be called Pinopsida or Coniferae; as an order they may be called Pinales or Coniferae (but see also Coniferales)).

Commonly, conifers are considered equivalent to the Gymnosperms,[4] particularly in areas with a temperate climate where they may be the only commonly occurring gymnosperms. However, these are two different levels of grouping: conifers are the largest and economically most important component group of the gymnosperms, but nevertheless they comprise only one of the four groups. The division Pinophyta consists of just one class, Pinopsida, which includes both living and fossil taxa. Subdivision of the living conifers into two or more orders has been proposed from time to time. The most commonly seen in the past was a split into two orders, Taxales (Taxaceae only) and Pinales (the rest), but recent research into DNA sequences suggests that this interpretation leaves the Pinales without Taxales as paraphyletic, and the latter order is no longer considered distinct. A more accurate subdivision would be to split the class into three orders, Pinales containing only Pinaceae, Araucariales containing Araucariaceae and Podocarpaceae, and Cupressales containing the remaining families (including Taxaceae), but there has not been any significant support for such a split, with the majority of opinion preferring retention of all the families within a single order Pinales, despite their antiquity and diverse morphology.

Phylogeny of the Pinophyta based on cladistic analysis of molecular data.[6]

The conifers are now accepted as comprising six to eight families, with a total of 65–70 genera and 600–630 species (696 accepted names).[2] The seven most distinct families are linked in the box above right and phylogenetic diagram left. In other interpretations, the Cephalotaxaceae may be better included within the Taxaceae, and some authors additionally recognize Phyllocladaceae as distinct from Podocarpaceae (in which it is included here). The family Taxodiaceae is here included in family Cupressaceae, but was widely recognized in the past and can still be found in many field guides. A new classification and linear sequence based on molecular data can be found in an article by Christenhusz et al.[7]

The conifers are an ancient group, with a fossil record extending back about 300 million years to the Paleozoic in the late Carboniferous period; even many of the modern genera are recognizable from fossils 60–120 million years old. Other classes and orders, now long extinct, also occur as fossils, particularly from the late Paleozoic and Mesozoic eras. Fossil conifers included many diverse forms, the most dramatically distinct from modern conifers being some herbaceous conifers with no woody stems. Major fossil orders of conifers or conifer-like plants include the Cordaitales, Vojnovskyales, Voltziales and perhaps also the Czekanowskiales (possibly more closely related to the Ginkgophyta).



Pinaceae





Araucariaceae



Podocarpaceae





Sciadopityaceae




Cupressaceae




Cephalotaxaceae




Taxaceae








Morphology[edit]

All living conifers are woody plants, and most are trees, the majority having monopodial growth form (a single, straight trunk with side branches) with strong apical dominance. Many conifers have distinctly scented resin, secreted to protect the tree against insect infestation and fungal infection of wounds. Fossilized resin hardens into amber. The size of mature conifers varies from less than one meter, to over 100 meters.[8] The world's tallest, thickest, and oldest living trees are all conifers. The tallest is a Coast Redwood (Sequoia sempervirens), with a height of 115.55 meters (although one Victorian mountain ash, Eucalyptus regnans, allegedly grew to a height of 140 meters, although the exact dimensions were not confirmed).[citation needed] The thickest, or tree with the greatest trunk diameter, is a Montezuma Cypress (Taxodium mucronatum), 11.42 meters in diameter. The smallest is the pygmy pine (Lepidothamnus laxifolius) of New Zealand, which is seldom taller than 30 cm when mature.[9] The oldest is a Great Basin Bristlecone Pine (Pinus longaeva), 4,700 years old.[10] Conflicting sources claim that the largest tree by 3 dimensional volume is either: a Giant Sequoia (Sequoiadendron giganteum), with a volume 1486.9 cubic meters [11] or a Ficus benghalensis named Thimmamma Marrimanu with volume unspecified.[12]

Foliage[edit]

Pinaceae: needle-like leaves and vegetative buds of Coast Douglas-fir (Pseudotsuga menziesii)
Araucariaceae: Awl-like leaves of Cook Pine (Araucaria columnaris)
Cupressaceae: scale leaves of Lawson's Cypress (Chamaecyparis lawsoniana); scale in mm

Since most conifers are evergreens,[1] the leaves of many conifers are long, thin and have a needle-like appearance, but others, including most of the Cupressaceae and some of the Podocarpaceae, have flat, triangular scale-like leaves. Some, notably Agathis in Araucariaceae and Nageia in Podocarpaceae, have broad, flat strap-shaped leaves. Others such as Araucaria columnaris have leaves that are awl-shaped. In the majority of conifers, the leaves are arranged spirally, exceptions being most of Cupressaceae and one genus in Podocarpaceae, where they are arranged in decussate opposite pairs or whorls of 3 (-4). In many species with spirally arranged leaves, the leaf bases are twisted to present the leaves in a very flat plane for maximum light capture (see e.g. photo of Grand Fir Abies grandis). Leaf size varies from 2 mm in many scale-leaved species, up to 400 mm long in the needles of some pines (e.g. Apache Pine Pinus engelmannii). The stomata are in lines or patches on the leaves, and can be closed when it is very dry or cold. The leaves are often dark green in colour, which may help absorb a maximum of energy from weak sunshine at high latitudes or under forest canopy shade. Conifers from hotter areas with high sunlight levels (e.g. Turkish Pine Pinus brutia) often have yellower-green leaves, while others (e.g. Blue Spruce Picea pungens) have a very strong glaucous wax bloom to reflect ultraviolet light. In the great majority of genera the leaves are evergreen, usually remaining on the plant for several (2-40) years before falling, but five genera (Larix, Pseudolarix, Glyptostrobus, Metasequoia and Taxodium) are deciduous, shedding the leaves in autumn and leafless through the winter.[1] The seedlings of many conifers, including most of the Cupressaceae, and Pinus in Pinaceae, have a distinct juvenile foliage period where the leaves are different, often markedly so, from the typical adult leaves.

Reproduction[edit]

Main article: Conifer cone

Most conifers are monoecious, but some are subdioecious or dioecious; all are wind-pollinated.[4] Conifer seeds develop inside a protective cone called a strobilus. The cones take from four months to three years to reach maturity, and vary in size from 2 mm to 600 mm long.

In Pinaceae, Araucariaceae, Sciadopityaceae and most Cupressaceae, the cones are woody, and when mature the scales usually spread open allowing the seeds to fall out and be dispersed by the wind. In some (e.g. firs and cedars), the cones disintegrate to release the seeds, and in others (e.g. the pines that produce pine nuts) the nut-like seeds are dispersed by birds (mainly nutcrackers, and jays), which break up the specially adapted softer cones. Ripe cones may remain on the plant for a varied amount of time before falling to the ground; in some fire-adapted pines, the seeds may be stored in closed cones for up to 60–80 years, being released only when a fire kills the parent tree.

In the families Podocarpaceae, Cephalotaxaceae, Taxaceae, and one Cupressaceae genus (Juniperus), the scales are soft, fleshy, sweet and brightly colored, and are eaten by fruit-eating birds, which then pass the seeds in their droppings. These fleshy scales are (except in Juniperus) known as arils. In some of these conifers (e.g. most Podocarpaceae), the cone consists of several fused scales, while in others (e.g. Taxaceae), the cone is reduced to just one seed scale or (e.g. Cephalotaxaceae) the several scales of a cone develop into individual arils, giving the appearance of a cluster of berries.

The male cones have structures called microsporangia that produce yellowish pollen through meiosis. Pollen is released and carried by the wind to female cones. Pollen grains from living pinophyte species produce pollen tubes, much like those of angiosperms. When a pollen grain lands near a female gametophyte, it undergoes fertilization of the female gametophyte. Alternatively, the gymnosperm male gametophytes are carried by wind to a female cone and are drawn into a tiny opening on the ovule called the micropyle. It is within the ovule that germination occurs. From here, a pollen tube seeks out the female gametophyte and if successful, fertilization occurs. In both cases, the resulting zygote develops into an embryo, which along with its surrounding integument, becomes a seed. Eventually the seed may fall to the ground and, if conditions permit, grows into a new plant.

In forestry, the terminology of flowering plants has commonly though inaccurately been applied to cone-bearing trees as well. The male cone and unfertilized female cone are called male flower and female flower, respectively. After fertilization, the female cone is termed fruit, which undergoes ripening (maturation).

Life cycle[edit]

  1. To fertilize the ovum, the male cone releases pollen that is carried on the wind to the female cone. (Male and female cones can be found on the same plant)
  2. The pollen fertilizes the female gamete (located in the female cone).*
  3. A fertilized female gamete (called a zygote) develops into an embryo.
  4. Along with integument cells surrounding the embryo, a seed develops containing the embryo. This is an evolutionary characteristic of the gymnosperms.
  5. Mature seed drops out of cone onto the ground.
  6. Seed germinates and seedling grows into a mature plant.
  7. When the plant is mature, the adult plant produces cones and the cycle continues.
  8. Fertilization takes place after 15 months of pollination.[13]

Tree development[edit]

The growth and form of a forest tree are the result of activity in the primary and secondary meristems, influenced by the distribution of photosynthate from its needles and the hormonal gradients controlled by the apical meristems (Fraser et al. 1964).[14] External factors also influence growth and form.

Fraser recorded the development of a single white spruce tree from 1926 to 1961. Apical growth of the stem was slow from 1926 through 1936 when the tree was competing with herbs and shrubs and probably shaded by larger trees. Lateral branches began to show reduced growth and some were no longer in evidence on the 36-year-old tree. Apical growth totalling about 340 m, 370 m, 420 m, 450 m, 500 m, 600 m, and 600 m was made by the tree in the years 1955 through 1961, respectively. The total number of needles of all ages present on the 36-year-old tree in 1961 was 5.25 million weighing 14.25 kg. In 1961, needles as old as 13 years remained on the tree.The ash weight of needles increased progressively with age from about 4% in first-year needles in 1961 to about 8% in needles 10 years old. In discussing the data obtained from the one 11 m tall white spruce, Fraser et al. (1964)[14] speculated that if the photosynthate used in making apical growth in 1961 was manufactured the previous year, then the 4 million needles that were produced up to 1960 manufactured food for about 600,000 mm of apical growth or 730 g dry weight, over 12 million mm³ of wood for the 1961 annual ring, plus 1 million new needles, in addition to new tissue in branches, bark, and roots in 1960. Added to this would be the photosynthate to produce energy to sustain respiration over this period, an mount estimated to be about 10% of the total annual photosynthate production of a young healthy tree. On this basis, one needle produced food for about 0.19 mg dry weight of apical growth, 3 mm³ wood, one-quarter of a new needle, plus an unknown amount of branch wood, bark and roots.

The order of priority of photosynthate distribution is probably: first to apical growth and new needle formation, then to buds for the next year’s growth, with the cambium in the older parts of the branches receiving sustenance last. In the white spruce studied by Fraser et al. (1964),[14] the needles constituted 17.5% of the over-day weight. Undoubtedly, the proportions change with time.

Invasive species[edit]

Main article: Wilding conifer

A number of conifers originally introduced for forestry have become invasive species in parts of New Zealand, including Radiata pine (Pinus radiata), Lodgepole pine (P. contorta), Douglas fir (Pseudotsuga mensiezii) and European larch (Larix decidua).[15] In parts of South Africa, Pinus pinaster, P. patula and P. radiata have been declared invasive species.[citation needed] These wilding conifers are a serious environmental issue causing problems for pastoral farming and for conservation.[15]

Predators[edit]

At least 20 species of roundheaded borers of the family Cerambycidae feed on the wood of spruce, fir, and hemlock (Rose and Lindquist 1985).[16] Borers rarely bore tunnels in living trees, although when populations are high, adult beetles feed on tender twig bark, and may damage young living trees. One of the most common and widely distributed borer species in North America is the whitespotted sawyer (Monochamus scutellatus). Adults are found in summer on newly fallen or recently felled trees chewing tiny slits in the bark in which they lay eggs. The eggs hatch in about 2 weeks, and the tiny larvae tunnel to the wood and score its surface with their feeding channels. With the onset of cooler weather, they bore into the wood making oval entrance holes and tunnel deeply. Feeding continues the following summer, when larvae occasionally return to the surface of the wood and extend the feeding channels generally in a U-shaped configuration. During this time, small piles of frass extruded by the larvae accumulate under logs. Early in the spring of the second year following egg-laying, the larvae, about 30 mm long, pupate in the tunnel enlargement just below the wood surface. The resulting adults chew their way out in early summer, leaving round exit holes, so completing the usual 2-year life cycle.

Cultivation[edit]

Conifers – notably Abies (Fir), Cedrus (Cedar), Chamaecyparis lawsoniana (Lawson's cypress), Cupressus (Cypress), Juniper, Picea (Spruce), Pinus (Pine), Taxus (Yew), Thuja - have been the subject of extensive cultivation and hybridisation for ornamental purposes (for more information see the Silviculture page). A multitude of different forms, sizes, and colours are commonly seen in parks and gardens throughout the world.[17]

Conifers in winter.

Conditions for growth[edit]

Conifers can absorb nitrogen in either the ammonium (NH4+) or nitrate (NO3) form, but the forms are not physiologically equivalent. Form of nitrogen affected both the total amount and relative composition of the soluble nitrogen in white spruce tissues (Durzan and Steward 1967).[18] Ammonium nitrogen was shown to foster arginine and amides and lead to a large increase of free guanidine compounds, whereas in leaves nourished by nitrate as the sole source of nitrogen guanidine compounds were less prominent. Durzan and Steward noted that their results, drawn from determinations made in late summer, did not rule out the occurrence of different interim responses at other times of year. Ammonium nitrogen produced significantly heavier (dry weight) seedlings with higher nitrogen content after 5 weeks (McFee and Stone 1968)[19] than did the same amount of nitrate nitrogen. Swan (1960)[20] found the same effect in 105-day-old white spruce.

The general short-term effect of nitrogen fertilization on coniferous seedlings is to stimulate shoot growth more so than root growth (Armson and Carman 1961).[21] Over a longer period, root growth is also stimulated. Many nursery managers were long reluctant to apply nitrogenous fertilizers late in the growing season, for fear of increased danger of frost damage to succulent tissues. A very interesting presentation at the North American Forest Tree Nursery Soils Workshop at Syracuse in 1980 provided strong contrary evidence: Bob Eastman, President of the Western Maine Forest Nursery Co. stated that for 15 years he has been successful in avoiding winter “burn” to Norway spruce and white spruce in his nursery operation by fertilizing with 50-80 lb/ac (56–90 kg/ha) nitrogen in September, whereas previously winter burn had been experienced annually, often severely. Eastman also stated that the overwintering storage capacity of stock thus treated was much improved (Eastman 1980).[22]

Of course, the concentrations of nutrient in plant tissues depend on many factors, including growing conditions. Interpretation of concentrations determined by analysis is easy only when a nutrient occurs in excessively low or occasionally excessively high concentration. Values are influenced by environmental factors and interactions among the 16 nutrient elements known to be essential to plants, 13 of which are obtained from the soil, including nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur, all used in relatively large amounts (Buckman and Brady 1969).[23] Nutrient concentrations in conifers also vary with season, age and kind of tissue sampled, and analytical technique. The ranges of concentrations occurring in well-grown plants provide a useful guide by which to assess the adequacy of particular nutrients, and the ratios among the major nutrients are helpful guides to nutritional imbalances.

References[edit]

  1. ^ a b c d e Campbell, Reece, "Phylum Coniferophyta". Biology. 7th. 2005. Print. P. 595
  2. ^ a b Catalogue of Life: 2007 Annual checklist - Conifer database Archived March 17, 2012 at the Wayback Machine
  3. ^ Lott, J., Liu, J., Pennell, K., Lesage, A., & West, M. (2002, September). Iron-rich particles and globoids in embryos of seeds from phyla Coniferophyta, Cycadophyta, Gnetophyta, and Ginkgophyta: characteristics of early seed plants. Canadian Journal of Botany, 80(9), 954–961. Retrieved July 17, 2009, from Academic Search Premier database.
  4. ^ a b c d Knee, Michael. "Gymnosperms". hcs.ohio-state.edu. Retrieved July 17, 2009. 
  5. ^ a b c Henry, R.J.(2005) Plant Diversity and evolution. London: CABI.
  6. ^ Derived from papers by A. Farjon and C. J. Quinn & R. A. Price in the Proceedings of the Fourth International Conifer Conference, Acta Horticulturae 615 (2003)
  7. ^ Christenhusz, M.J.M., Reveal, J., Farjon, A., Gardner, M.F., Mill, R.R. & Chase, M.W. (2011) A new classification and linear sequence of extant gymnosperms. Phytotaxa 19: 55–70.
  8. ^ Enright, Neal J. and Robert S. Hill. 1990. Ecology of the southern conifers. Washington, DC: Smithsonian. 342pp.
  9. ^ Wassilieff, Maggy. "Conifers". Te Ara – the Encyclopedia of New Zealand updated 1-Mar-09. 
  10. ^ Dallimore, William, Albert Bruce Jackson, and S.G. Harrison. 1967. A handbook of Coniferae and Ginkgoaceae, 4th ed. New York: St. Martin's Press. xix, 729 p.
  11. ^ Vidakovic, Mirko. 1991. Conifers: morphology and variation. Translated from Croatian by Maja Soljan. Croatia: Graficki Zavod Hrvatske
  12. ^ Peter Matthews; Michelle Dunkley McCarthy; Mark (CON) Young (October 1993). The Guinness Book of Records 1994. Facts on File. ISBN 978-0-8160-2645-6. Retrieved 5 June 2012.
  13. ^ http://bioserv.fiu.edu/~biolab/labs/1011/Spring%202009/TA%20notes%20and%20pictures/Week%205%20-%20Seed%20Plants.htm
  14. ^ a b c Fraser, D.A.; Belanger, L.; McGuire, D.; Zdrazil, Z. 1964. Total growth of the aerial parts of a white spruce tree at Chalk River, Ontario, Canada. Can. J. Bot. 42:159–179.
  15. ^ a b "South Island wilding conifer strategy". Department of Conservation (New Zealand). 2001. Retrieved 2009-04-19. 
  16. ^ Rose, A.H.; Lindquist, O.H. 1985. Insects of eastern spruces, fir and, hemlock, revised edition. Gov’t Can., Can. For. Serv., Ottawa, For. Tech. Rep. 23. 159 p. (cited in Coates et al. 1994, cited orig ed 1977)
  17. ^ Farjon, Aljos (2010). A handbook of the world's conifers. Brill Academic Publishers. ISBN 9004177183. 
  18. ^ Durzan, D.J.; Steward, F.C. 1967. The nitrogen metabolism of Picea glauca (Moench) Voss and Pinus banksiana Lamb. as influenced by mineral nutrition. Can. J. Bot. 45:695–710.
  19. ^ McFee, W.W.; Stone, E.L. 1968. Ammonium and nitrate as nitrogen sources for Pinus radiata and Picea glauca. Soil Sci. Soc. Amer. Proc. 32(6):879–884.
  20. ^ Swan, H.S.D. 1960. The mineral nutrition of Canadian pulpwood species. 1. The influence of nitrogen, phosphorus, potassium and magnesium deficiencies on the growth and development of white spruce, black spruce, jack pine and western hemlock seedlings grown in a controlled environment. Pulp Paper Res. Instit. Can., Montreal QC, Woodlands Res. Index No. 116, Tech. Rep. 168. 66 p.
  21. ^ Armson, K.A.; Carman, R.D. 1961. Forest tree nursery soil management. Ont. Dep. Lands & Forests, Timber Branch, Ottawa ON. 74 p.
  22. ^ Eastman, B. 1980. The Western Maine Forest Nursery Company. pp. 291-295 In Proc. of the North American Forest Tree Nursery Soils Workshop, July 28-August 1, 1980, Syracuse, New York. Environment Canada, Canadian Forestry Service, USDA For. Serv.
  23. ^ Buckman, H.O.; Brady, N.C. 1969. The Nature and Properties of Soils, 7th ed. Macmillan NY. 653 p.

External links[edit]