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Abstract 

We greatly expand the space of tractable term-structure models. We consider one 

example that combines positive yields with rich volatility and correlation dynamics. Bond 

prices are expressed in closed form and estimation is straightforward. We find that the 

early stages of a recession have distinct effects on yield volatility. Upon entering a 

recession when yields are far from the lower bound, (i) the volatility term structure 

becomes flatter, (ii) the level and slope of yields are nearly uncorrelated, and (iii) the 

second principal component of yields plays a larger role. However, these facts are 

significantly different when yields are close to the lower bound. Entering a recession in 

such a setting, (i) the volatility term structure instead steepens, (ii) the level and slope 

factors are strongly correlated, and (iii) the second principal component of yields plays a 

smaller role. Existing dynamic term-structure models do not capture the changes in the 

cyclical responses of the volatility term structure near the lower bound. 

JEL classification: G12 

Bank classification: Asset pricing; Interest rates; Transmission of monetary policy; 

Uncertainty and monetary policy; International topics; International financial markets 

Résumé 

Nous élargissons le champ des modèles analytiques de structure par terme des taux 

d’intérêt. Nous examinons un cas combinant des taux d’intérêt positifs et des dynamiques 

flexibles de la volatilité et de la corrélation. Notre approche fournit des formules 

analytiques des prix des obligations et permet une estimation aisée du modèle. D’après 

nos résultats, les phases initiales d’une récession produisent des effets distinctifs sur la 

volatilité des rendements. À l’amorce de la récession, si les rendements sont nettement 

supérieurs à la valeur plancher, a) la courbe de la volatilité de la structure par terme 

s’aplatit; b) le niveau et la pente de la courbe des taux ne présentent pratiquement aucune 

corrélation; c) la seconde composante principale de la courbe des taux joue un plus grand 

rôle. Cependant, tous ces faits deviennent sensiblement différents si les rendements 

avoisinent la valeur plancher. Au début d’une récession, a) la courbe de la volatilité de la 

structure par terme voit sa pente s’accentuer; b) le niveau et la pente de la courbe des taux 

présentent une forte corrélation; c) la seconde composante principale de la courbe des 

taux joue un rôle relativement mineur. Les modèles dynamiques actuels de structure par 

terme des taux d’intérêt sont incapables de générer les changements observés dans 

l’évolution cyclique de la volatilité de la courbe des taux lorsque ces derniers se trouvent 

à proximité de la valeur plancher. 

Classification JEL : G12 

Classification de la Banque : Évaluation des actifs; Taux d’intérêt; Transmission de la 

politique monétaire; Incertitude et politique monétaire; Questions internationales; 

Marchés financiers internationaux 
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Non-Technical Summary 

The behaviour of yields on bonds with different maturities changes when the overnight rate 

reaches its lower bound. This change is most apparent in the early stages of a recession. Upon 

entering a recession when the overnight rate remains away from its lower bound, the volatility of 

yields at short maturities increases substantially more than the volatility at long maturities. 

Yields at short maturities also become less correlated with yields at long maturities. These facts 

are significantly different when the overnight rate reaches its lower bound. Entering a recession 

in such a setting, the volatility at short maturities falls relative to long maturities and the 

correlation increases between all maturities. We develop a new empirical approach capturing the 

effect of a recession on yield volatilities as the Federal Reserve responds to economic conditions. 



1 Introduction

The absence of arbitrage (AOA) is an essential feature of bond-pricing models. Given

a model for bond prices, the managers of a bond portfolio should discard estimates of

the portfolio’s future risk and returns if the underlying forecasts of bond yields offer arbi-

trage opportunities. Similarly, its risk manager should attribute zero probability to these

configurations of yield forecasts.

Producing yield forecasts that are free of arbitrage is not a trivial task. However, the

fundamental theorem of finance can help us transform the problem into a more manageable

form. AOA is equivalent to the existence of a strictly positive change of measure from the

historical measure P to a measure Q, where asset prices are martingales when discounted

at the risk-free rate: the “risk-neutral” measure (Harrison and Kreps, 1979; Delbaen and

Schachermayer, 1994, 1998). Since the terminal value of the risk-free bond is known, the

construction of arbitrage-free bond prices based on this equivalence requires that we specify:

(i) the one-period risk-free rate rt, (ii) the dynamics of rt under P, and (iii) a strictly positive

change of measure. The price of a bond with any maturity h solves the expectation of future

short rates rt+1, . . . , rt+h under Q.

We take a different route, introducing the family of tractable term-structure models

(TTSMs). We specify bond prices directly and then check whether these prices are consistent

with the AOA. We proceed in a few steps. First, we show that our construction of bond

prices is free of dominant trading strategies (Rothschild and Stiglitz, 1970; Levy, 1992). Of

course, many arbitrage opportunities are not dominant. We then show that any remaining

arbitrage opportunities within our framework must be self-financing and offer no initial payoff

(if an opportunity exists). Building on these results, we show that our construction of bond

prices precludes arbitrage opportunities as long as transaction costs are non-zero. In other

words, our construction is arbitrarily close to the AOA. Finally, we show (in an appendix)

how to construct a sequence of no-arbitrage frictionless models that, in the limit, converge to

our pricing model proposed in Assumption 1.

Our approach comes at a cost. Absent a pricing kernel, the price of risk remains unspecified.

We can still easily compute bond risk premiums and Sharpe ratios, but we cannot offer a

decomposition of the premiums between quantities and the price of risk (inside the model).

Yet, our approach nests the widely-used Nelson and Siegel (1987) (NS) term-structure

representation of yields, providing an instructive example. Notwithstanding the popularity

and empirical success of the NS representation, Bjork and Christensen (1999) and Filipovic
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(1999) show that it is not consistent with the AOA in a context without trading frictions.

Our approach shows that the NS representation is arbitrarily close to the AOA, explaining

the common observations that models based on NS loadings are “almost” free of arbitrage.

Indeed, Coroneo, Nyholm, and Vidova-Koleva (2011) cannot reject the null hypothesis that a

dynamic version of NS (Diebold and Li, 2006) is consistent with the AOA. Conversely, the

empirical success of the NS decomposition supports the usefulness of TTSMs.

What do we gain from moving toward TTSMs? We emphasize that TTSMs are parsimo-

nious, flexible, and highly tractable. Directly specifying bond prices guarantees tractability,

circumventing the need to compute the often intractable integral under Q. As a prime

example, we can easily impose that all yields are positive. Beyond tractability, our deeper

motivation follows from the enduring tension between fitting the dynamics of yields and of

yield volatility (Dai and Singleton, 2000). Gaussian dynamic term-structure models (DTSMs)

with constant variance can fit the evidence on bond predictability (the dynamics of yields),

but not the volatility of yields. In contrast, a standard An(m) model allows for stochastic

volatility but cannot fit the bond risk premium. Recent research addresses this tension, but

in situations where yields are far from the lower bound (Cieslak and Povala 2011, CP 2015).

However, approaching (and reaching) the lower bound creates strong implications for the fit

of yields and yield volatility. Failing to impose the lower bound produces biased forecasts

and misses the dramatic volatility compression of short-term yields exhibited in recent years.

Table 1 summarizes how this tension continues to haunt existing models.

Volatility Compression
at the Lower Bound

Cyclical
Short-Rate
Volatility

no yes
no A0(3) Black (1995)

yes CP (2015) this paper

Table 1: Matching yield volatility—Stylized facts.

Our approach to specifying bond prices relies only on weak technical conditions for the

risk-factor dynamics. Within our general framework, we introduce a class of TTSMs that are

as close as possible to the standard models except for two key departures: (i) yields must be

positive and (ii) they must facilitate a flexible specification of the volatility dynamics.1 In

particular, we specify risk factors with conditionally Gaussian VAR(1) dynamics. To ensure

1The lower bound can be any constant, and not necessarily zero.
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positivity, we write the short-rate function as a logistic transformation of the usual linear

rule. Intuitively, our specification is close in spirit to that in Black (1995). In fact, we adapt

the logistic form to nest the linear and the max case if one key parameter tends to either 0

or ∞ in the limit, respectively. Finally, we consider a flexible multivariate specification for

the conditional volatilities and correlations of the risk-factor innovations.

Our results highlight three key contributions. First, we capture existing stylized facts

within a traditional model with positive interest rates. In the sample away from the lower

bound, our model matches standard risk-premium estimates from a standard Gaussian

3-factor model (by construction), but also fits the yield-volatility dynamics. We confirm

that the volatility term structure slopes upward but with a hump shape around the 2-year

maturity (Piazzesi, 2005); that the volatility of all yields rise in recession; and that the

volatility term structure becomes flat or inverted in the early stages of a recession (Cieslak

and Povala, 2011) (the volatility of short-term yields increases most).

Second, we find that changes in the volatility term structure alter the nature and the

explanatory power of the principal components extracted from yields. Consider the following

exercise. Fix a date, simulate the term structure of yields one period ahead, and compute the

principal components across simulations. This corresponds to a principal component analysis

(PCA) applied to the conditional correlation matrix of yields.2 Away from the lower bound,

the results show that the explanatory power of the first (conditional) component varies from

close to 95 percent in good times to below 85 percent during recessions. In these periods, the

second component plays a correspondingly greater role, reflecting the actions of the Federal

Reserve. This effect is entirely captured by changes in the variance of the risk factors, since

the factor loadings are constant.

Finally, we find that the response of the volatility term structure to economic conditions

changes sign near the lower bound. The short-rate volatility falls—instead of rising—and the

volatility term structure steepens—instead of flattening—as the Federal Reserve approaches

and reaches the lower bound. Existing models do not capture this shift in the volatility

dynamics. In addition, the volatility compression also changes the correlation structure

between yields. Near the lower bound, the explanatory power of the first component quickly

reaches and stays at 95 percent, while the other components become less important. The

first components play a greater role because yields are more correlated. This happens either

away from the lower bound, where the correlation between the level and slope is large and

negative, or near the lower bound, where the correlation between the level and slope is large

2We use a simulation-based PCA, since yields are a non-linear function of the risk factors in our model.
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and positive (as high as 0.8).

Our specification of bond prices is closely related to several existing DTSMs, and we

discuss these connections in detail. We find that results from an affine Gaussian TTSM

and a DTSM with constant variance are indistinguishable. Further, we confirm that risk

premium estimates and short-rate forecasts from linear models suffer from severe bias after

2008, especially for short maturities and for short horizons. We also show how to construct

close counterparts to the affine-quadratic and Black (1995) max models. Within the standard

framework, both approaches pose severe estimation or tractability problems.3

Section 2 discusses our key assumptions and introduces the family of TTSMs. Section 3

establishes theoretically that our bond prices are arbitrarily close to the absence of arbitrage.

Section 4 details the specification, identification and estimation of one class of TTSMs with

positive yields. Sections 5-6 present the empirical results for linear and non-linear models,

respectively, and Section 7 concludes.

2 Tractable Term-Structure Models

2.1 Bond prices

This section introduces the family of TTSMs where bond prices are specified directly. This

approach to constructing bond prices is flexible and tractable, guaranteeing that bond yields

are available in closed form with only minimal assumptions about the risk-factor dynamics.

The next section verifies that the resulting bond prices are free of arbitrage.

Consider a discrete-time economy endowed with J zero-coupon bonds maturing in n =

1, 2, . . . , J periods, each with a face value of one dollar. Let Pn(Xt) denote the price of the

n-period bond, where Xt is a state vector with support X (e.g., X = RK). Assumption 1

provides a direct specification for Pn(Xt).

Assumption 1. The n-period bond price Pn(Xt) is given recursively by

P0(Xt) ≡1, (1)

Pn(Xt) =Pn−1(g(Xt))× exp(−m(Xt)), (2)

3DTSMs based on Black (1995) are based on truncated distributions and do not deliver closed-form bond
prices and yields. Closed-form approximation schemes have been proposed recently, but only for the cases
where risk factors have Gaussian VAR(1) dynamics (Krippner, 2011; Christensen and Rudebusch, 2013; Bauer
and Rudebusch, 2013; Wu and Xia, 2013).

4



for functions m(·) and g(·) such that m(X) ∈ M ⊆ R and g(X) ∈ X for every Xt ∈ X.

The recursive structure of bond prices is the distinctive feature of Assumption 1. The initial

value in Equation (1) corresponds to the fact that maturing bonds are redeemed at face

value, which we normalize to one dollar. Equation (2) states that the pricing function for the

n-period bond is given recursively from the pricing function for the (n-1)-period bond. Since

zero-coupon bond prices are available in closed form for all maturities, it follows that all

forward rates and zero-coupon yields are available in closed form. This calculation is spelled

out formally in Theorem 1.

Theorem 1. Assumption 1 implies that the n-period zero-coupon yield is given by

yn,t = (1/n)
n−1∑
i=0

m(g◦i(Xt)), (3)

and that the one-period forward rate n periods in the future is given by

fn,t = m(g◦n(Xt)), (4)

where the operator ◦ applies the function g(·) iteratively: g◦i(Xt) = g(g(. . . g(Xt))) and

g◦0(Xt) = Xt by convention.

Proof. Starting with P0(·) ≡ 1 and expanding the recursion (2), we get

Pn(Xt) = exp(−
n−1∑
i=0

m(g◦i(Xt))). (5)

Equations (3) and (4) follow from the definition of the n-period yield and forward rate,

yn,t ≡ − log(Pn(Xt))/n and fn,t ≡ (n+ 1)yn+1,t − nyn,t, respectively.

The functions m(·) and g(·) are the primitive blocks in the construction of bond prices.

Their interpretation is straightforward. The function m(Xt) gives the one-period interest

rate. Setting n = 1, we get y1,t = f0,t = − log(P1(Xt)) = m(Xt). In turn, the function

g(·) embodies how the price of the bond tomorrow is discounted back to its present value

today. For instance, using Equation (2) with n = 2, the two-period bond price is given by

P2(Xt) = P1(g(Xt))× exp(−m(Xt)) = exp (−m(g(Xt))−m(Xt)).
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2.2 Properties

Assumption 2 builds on economic principles and summarizes the key desirable properties

for the choice of (m(·), g(·)). These additional properties play a central role in our empirical

implementation, but we emphasize that our theoretical results only rely on Assumption 1.

Assumption 2. Bond prices satisfy the following properties:

P1 — Positivity Pn(Xt) ≤ 1 ∀X ∈ X or equivalently yn,t ≥ 0;

P2 — Discounting distant cash flows limn→∞ Pn(Xt)→ 0;

P3 — Invertibility ∃u(·) : R→ R such that u−1(fn,t) = an + bnXt ∀n.

P1 requires that yields to maturity are positive. Nominal interest rates are necessarily

bounded below by the costs of alternative stores of value. For instance, negative yields can be

avoided costlessly for small amounts by holding cash. P2 reflects the fact that sure payoffs

that are more distant should have a lower price. Finally, P3 implies that forward rates can be

inverted to a linear transformation of Xt. P3 leads to term-structure models where estimation

is fast and robust despite any inherent non-linearity and regardless of the dimension of the

risk factors Xt. In that regard, P3 ensures that we can “undo” the non-linearity in forward

rates.

Proposition 1. The following choices guarantee that bond prices constructed as in Assump-

tion 1 satisfy Properties P1-P3:

i) m(·) is continuous and monotonic with m(X) ≥ 0 ∀X ∈ X,

ii) g(X) is a contraction with unique fixed-point g(X∗) = X∗,

iii) g(X) = GX.

Proof. See appendix.

From Equations (3) and (4), it is clear that m(X) ≥ 0 guarantees P1: all forward

rates and all yields to maturity are positive.4 The second condition is necessary for P2,

guaranteeing that long-run forward rates do not diverge. Finally, the last condition takes g(·)
as a linear function of X and, together with the other two conditions, guarantees P3 so that

we can invert forward rates and proceed with fast and robust estimation. In particular, the

requirement that g(·) is a contraction implies that the matrix G has no unit root.

4Alternatively, one could impose the following restriction on the support of X: i.e., X = RK
+ . We choose

instead to maintain broad flexibility in the time-series dynamics for X at little cost.
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2.3 Examples

Nelson-Siegel

The direct approach to constructing bond prices in Assumption 1 is reminiscent of and

overlaps with a long-standing tradition in fitting observed bond prices. For instance, TTSMs

include several 3-factor models where the loadings on yield,

yt,n = X1,tb1(n) +X2,tb2(n) +X3,tb3(n),

are identical to those given in Nelson and Siegel (1987) (see also Figure 1):

b1(n) = 1

b2(n) =

(
1− exp (−nλ)

nλ

)
b3(n) =

(
1− exp (−nλ)

nλ
− exp (−nλ)

)
. (6)

The mapping with Nelson and Siegel (1987) is formally stated in Proposition 2.

Proposition 2. Suppose Xt ∈ R3, with m(·) and g(·) given by

m(Xt) =
[
1 1−e−λ

λ
1−e−λ
λ
− e−λ

]
Xt, (7)

g(Xt) =

1 0 0

0 e−λ λe−λ

0 0 e−λ

Xt, (8)

then, bond prices generated from the construction in Assumption 1 have yields to maturity

with Nelson-Siegel loadings given by Equation (6).

Proof. Direct computation of (1/n)
∑n−1

i=0 m(g◦i) yields the result.

Note that we differ from Nelson and Siegel (1987) for several reasons. First, our con-

struction is more general, allowing for choices of m(·) and g(·) beyond Equations (7) and (8).

Second, Section 3 assesses explicitly any arbitrage opportunity within our framework and

provides a precise economic sense in which these models (including Nelson and Siegel (1987))

are very nearly arbitrage-free. Third, the choice of m(·) and g(·) in Equations (7) and (8)

does not satisfy P1 and P2.
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Figure 1: Nelson-Siegel Loadings

Linear models

Suppose Xt ∈ RN . The following natural specification leads to affine Gaussian TTSMs:

m(Xt) =δ0 + δ′1Xt (9)

g(Xt) =KXt, (10)

where δ0 is a scalar, δ1 is an N × 1 vector and K is an N × N matrix. From Theorem 1,

yields are linear:

yn,t =δ0 + (Bn/n)Xt, (11)

with Bn given by the recursion:

Bn = Bn−1K + δ′1. (12)

For comparison, the A0(N) Gaussian DTSM (e.g., Dai and Singleton, 2000 and Duffee, 2002)

has a linear short-rate equation and risk-neutral dynamics given by

rt =δ0 + δ′1Xt

Xt+1 =K0 +KQ
1 Xt + εt+1, (13)
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where εt+1 ∼ N(0,Σ). The solution for yields in that standard case is given by

yn,t = An/n+ (Bn/n)Xt, (14)

with coefficients given by

Bn =Bn−1K
Q
1 + δ′1, (15)

An =An−1 + δ0 −
1

2
Bn−1ΣB

′
n−1. (16)

Clearly, the short rate rt and the loadings Bn are identical between these models. The intercept

terms An for n > 1 are different only because of the convexity correction Bn−1ΣB
′
n−1. This

Jensen term is negligible in a typical application (see Figure 2).

0 20 40 60 80 100 120
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

months

%

Figure 2: The Jensen term (12Bn−1ΣB
′
n−1) is negligible in Gaussian models. Differences between

the loadings in linear 3-factor models where yield PCA are used as risk factors and parameter
estimates are based on the canonical representation in Joslin, Singleton, and Zhu (2011).

Black’s models

Black (1995) emphasizes that bondholders have an option to hold cash instead of bonds,

which implies a lower bound on nominal yields. Black uses the max function to obtain a

positive overnight rate, i.e., rt = max(st, 0), where st is the so-called “shadow” rate that
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would prevail absent the lower bound. In our framework, this yields

st =δ0 + δ′1Xt (17)

m(Xt) = max(0, st) (18)

g(Xt) =KXt, (19)

and from Theorem 1, forward rates are simply given by

fn,t = max(0, KnXt), (20)

and yields are given by Equation (3). In sharp contrast, DTSM implementations of Black’s

formulation suffer from severe drawbacks. First, closed-form bond prices are not available

and estimation is computationally demanding.5 Second, Black’s DTSMs must impose a

constant volatility to remain tractable.6 Finally, this approach does not meet P3, since the

max function cannot be uniquely inverted.

Quadratic models

The following choice generates linear-quadratic TTSMs:

m(Xt) =δ0 + δ′1Xt +X ′tδ2Xt

g(Xt) =KXt, (21)

where δ0 is a scalar, δ1 is N × 1 and δ2 is an N × N matrix. From Theorem 1, yields are

given by

yn,t =δ0 + (Bn/n)Xt +X ′t(Cn/n)Xt, (22)

where the linear and quadratic coefficients Bn and Cn are given by

Cn =K ′Cn−1K + δ2

Bn =Bn−1K + δ′1. (23)

5Bauer and Rudebusch (2013) use Monte Carlo simulations under the risk-neutral measure. Krippner
(2011) modifies no-arbitrage prices to explicitly account for the zero lower bound in a tractable way (see also
Christensen and Rudebusch, 2013), but does not check whether prices are consistent with the AOA.

6Kim and Priebsch (2013), in continuous time, and Wu and Xia (2013), in discrete time, introduce
tractable second-order approximations based on series expansion of yields.
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Compare this with the affine-quadratic DTSMs developed by Ahn, Dittmar, and Gallant

(2002) and Leippold and Wu (2003), where the short-rate equation is quadratic:

rt = δ0 + δ′1Xt +X ′tδ2Xt,

and with the risk-neutral dynamics as in (13).7 The solution for yields in this case is given by

yn,t =An/n+ (Bn/n)Xt +X ′t(Cn/n)Xt, (24)

where the loadings An, Bn and Cn are given by the following recursions:

Cn =KQ
1

′
Cn−1Ωn−1K

Q
1 + δ2,

Bn =Bn−1Ωn−1K
Q
1 + δ′1,

An =An−1 + δ0 −
1

2
log|Ωn−1| −

1

2
Bn−1Ωn−1ΣBn−1, (25)

with Ωn−1 ≡ (IN − 2ΣCn−1)
−1. Comparing loadings in (23) and (25) reveals two differences.

First, the term Bn−1Ωn−1ΣBn−1 reflects a convexity adjustment. Second, the matrix Ωn−1

may introduce a wedge between loadings if the quadratic coefficient δ2 is “large.”

3 Near-Absence of Arbitrage

Directly specifying bond prices stands in contrast to the standard (indirect) construction

of term-structure models based on computing
∫

(Mt+n/Mt)dP.8 The standard approach

guarantees that bond prices rule out arbitrage opportunities if the proposed pricing kernel

Mt+n/Mt is strictly positive almost surely (∀n). However, computing the integral in this

conditional expectation is not analytically tractable for many interesting choices of (Mt,P).

Our direct approach to bond prices guarantees tractability. On the other hand, we

have yet to assess whether it precludes arbitrage opportunities. For instance, Bjork and

Christensen (1999) and Filipovic (1999) show that the Nelson and Siegel (1987) model does

not ensure the absence of arbitrage. However, it is also generally agreed that these loadings

7See also Longstaff (1989), Beaglehole and Tenney (1991), and Constantinides (1992) (the SAINTS model)
for earlier iterations of affine-quadratic models. Realdon (2006) provides a discrete time treatment.

8The integral can be computed given the relevant information set It and dynamics for Mt+n under the
historical measure P. Equivalently, one can obtain bond prices via

∫
exp(−

∑n−1
j=0 rt+j)dQ, given the dynamics

for the risk-free rate rt under the risk-neutral measure Q.
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are “almost arbitrage-free,” as put forth in Diebold and Rudebusch (2012).9 In the following,

we provide economic foundations for the pervasive perception that these models are “almost

arbitrage-free.”

Absence of Dominant Trading Strategies

Checking for the absence of arbitrage is a difficult problem. It may seem that we have

traded one intractable problem for another. However, we can build on the simple structure

of bonds. To begin, we check these models for the absence of dominant (AOD) trading

strategies – a requirement that is related to, but weaker than, the absence of arbitrage (AOA)

condition. Recall that the AOA holds if and only if any portfolio with strictly non-negative

payoffs admits a strictly positive price.10 The AOD also imposes a strictly positive price, but

only for the set of portfolios with payoffs that are strictly positive in all states. Theorem 2

establishes that using Assumption 1 to construct bond prices is sufficient to guarantee AOD.

Theorem 2. Assumption 1 guarantees the absence of dominant trading strategies (AOD)

between bond prices.

Proof. Let wn denote the amount (in face value) invested in each n-period bond. Suppose
that this portfolio guarantees positive payoffs:

∑
nwnPn−1(Xt+1) > 0 ∀Xt+1 ∈ X. From the

pricing recursions in Equation (2), the price of this portfolio is given by∑
n

wnPn(Xt) = exp(−m(Xt))×
∑
n

wnPn−1(g(Xt)). (26)

Since g(Xt) ∈ X, and since
∑

nwnPn−1(Xt+1) > 0 for all Xt+1 ∈ X, it follows that the price

of this portfolio is strictly positive. Thus, a dominant trading strategy does not exist.

9For an excellent account of this literature, see Diebold and Rudebusch (2012) and references therein.
Krippner (2013) tightens this point, showing that the Nelson and Siegel (1987) model can be seen as low-order
Taylor approximations of the generic no-arbitrage Gaussian affine term-structure model. The difference is
small in practice. Coroneo, Nyholm, and Vidova-Koleva (2011) find that the no-arbitrage parameters are not
statistically different from those obtained based on Nelson and Siegel (1987). Our line of argument is distinct
from the technical approaches, such as the one based on Taylor approximations proposed by Krippner (2013).
It is also much more general, since our results apply to a much richer set of models beyond Nelson and Siegel
(1987).

10To be precise, any portfolio with positive cash flows for a strictly positive measure and zero cash flows
otherwise.
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Near-Absence of Arbitrage

Given the result in Theorem 2 that TTSMs ensure AOD, can we ask how “close” we

are to the AOA? One way of addressing this question is to ask how negative the price of

portfolios with strictly non-negative payoffs can be. In other words, how close are we to

guaranteeing that their price is positive (as required by the AOA)? A negative price is a

serious violation of the no-arbitrage principle, since one is paid money to own a portfolio

that never requires contributions in the future. In contrast, any model that assigns a price of

zero is close to guaranteeing the AOA. Theorem 3 shows that Assumption 1 is also sufficient

to guarantee that portfolios with strictly non-negative payoffs cannot admit negative prices.

Theorem 3. Assumption 1 ensures that portfolios with strictly non-negative payoffs cannot

admit negative prices.

Proof. Let wn denote the amount (in face value) invested in each n-period bond. Consider

a portfolio with strictly non-negative payoffs:
∑

nwnPn−1(Xt+1) ≥ 0 ∀Xt+1 ∈ X. From the

pricing recursion in Equation (2), the price of this portfolio is given by∑
n

wnPn(Xt) =exp(−m(Xt))×
∑
n

wnPn−1(g(Xt)). (27)

The price of this portfolio cannot be negative for it requires
∑

nwnPn−1(g(Xt)) < 0, but this

would contradict g(Xt) ∈ X and
∑

nwnPn−1(Xt+1) ≥ 0 for all Xt+1 ∈ X.

Figure 3 illustrates Theorem 3. For portfolios with strictly non-negative payoffs, TTSMs

allow for prices on the positive half of the real line, including the origin. The absence of

arbitrage allows for prices on the positive half of the real line, excluding the origin. The

difference reduces to one point on the real line (the origin).

(

[

Required by AOA
0

0
Implied by our models

Figure 3: Prices of portfolios with strictly non-negative payoffs.

The following example provides another way to see intuitively how the AOD is close to
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the AOA. Consider a portfolio w that pays one dollar in some states (with a strictly positive

measure) and zero otherwise. If markets are complete, we can construct a portfolio wε that

pays at least ε dollars in all states (i.e., either 1 or 1 + ε dollars). The AOD implies that the

price pε of wε must be positive (wε earns strictly positive cash flows in every state). Varying

ε closer to zero, we obtain a sequence of portfolios wε approaching portfolio w. Each of

these portfolios has a positive price. With continuous prices, this example suggests that

the price of portfolio w – the limit of the sequence of positive prices pε as ε tends to zero –

cannot be negative. For convenience, this heuristic argument invoked assumptions regarding

market completeness and price continuity. Fortunately, the result in Theorem 3 only relies

on Assumption 1.

Transaction Costs

At this point, we conclude that our framework may allow for the possibility of self-financing

portfolios (with price zero) paying non-negative cash flows. Does this represent a serious

violation of the no-arbitrage principle? Theorem 4 addresses this question formally, showing

that, as long as there is some (however small) transaction cost in short-selling bonds, all

arbitrage opportunities are ruled out by our models.

Theorem 4. Bond prices constructed in Assumption 1, combined with any non-zero level of

transaction costs, rule out all arbitrage opportunities.

Proof. See appendix.

The presence of small transaction costs preventing self-financing strategies is economically

plausible. Again, consider a portfolio w that pays one dollar in some states (with a strictly

positive measure) and zero otherwise. If this portfolio is self-financing, we must sell some

bonds short to cover the costs of the long positions.11 But this is costly. A substantial

literature has documented the costs to establish and maintain short Treasury bond positions,

even for the most liquid issues (see e.g., Duffie, 1996; Krishnamurthy, 2002; Vayanos and

Weill, 2008 and Banerjee and Graveline, 2013). In other words, this portfolio may not give

rise to an arbitrage opportunity after shorting (and other transactions) costs are taken into

account. Consistent with this observation, Liu and Longstaff (2004) show that risk-averse

arbitrageurs do not fully exploit arbitrage opportunities in the Treasury market.

11To be more precise, a long position on any given zero-coupon bond commands a positive price, by
construction in our model (see Equation (5)). By the same token, any portfolio combining long positions only
will have a positive price model. It follows that any portfolio to which our model assigns a price of zero or
less must include short positions.
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We emphasize that the magnitude of transaction costs is inconsequential to the above

argument. That is, we do not require transaction costs to be of certain sizes (after all, with

sufficiently large transaction costs, no trading strategy can be profitable). The key to our

argument lies in the fact that to finance even very small set-up costs, the price of a portfolio

must be in the negative region. And it is the sign, not the magnitude, of the price that

triggers Theorem 3.

4 Estimation

4.1 Data

We use data sampled at a monthly frequency between January 1990 and December

2014, but we only use data up to December 2008—when the overnight rate reached its

lower bound—when estimating affine models. Our sample includes forward rates and macro

variables. We include forward rates with quarterly maturities between 3 months and 10 years.

We use data from Gurkaynak, Sack, and Wright (GSW) for maturities longer than 6 months,

but we extract the 3-month forward from the Center for Research in Security Prices (CRSP)

data. Figure 4 shows selected 3-month forward rates with maturities of 6 months, 1 year, 5

years and 10 years.
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Figure 4: Forward rates reached their lowest range at different dates. Monthly data from January
1990 to December 2014.

We also use unspanned macroeconomic variables that are relevant for the dynamics
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of the risk factors (Joslin, Priebsch, and Singleton, 2013). Specifically, our sample also

includes one-year-ahead forecasts of inflation and of GDP growth from Blue Chip surveys

of professional forecasters. This provides forward-looking information useful for forecasting

future interest rates (Chun, 2010).

4.2 Identification

In line with Assumption 1 and Assumption 2, we introduce the following parameterization

for the m(·) and g(·) functions:

m(Xt) =u(θ, δ0 + δ′1Xt) (28)

g(Xt) =KXt, (29)

where Xt ∈ RN , δ0 + δ′1Xt is a scalar and θ is a parameter (possibly a vector) summarizing

non-linear features in m(·). Taking u(·) as the identity function then Equation (28) collapses

to the linear case (in which case, θ is empty). From Equation (28), the n-period forward rate

fn,t = m(g◦n(Xt)) is given by

fn,t = u(θ, δ0 + δ′1K
nXt). (30)

P3 requires that u(θ, ·) is invertible with respect to the second argument, implying that we

can transform to the familiar linear form:

f̃n,t = u−1(θ, fn,t) = δ0 + δ′1K
nXt. (31)

We use the standard normalization of Joslin, Singleton, and Zhu (2011) to identify δ0, δ1 and

K. Specifically, δ1 = ι is a vector of ones, K is an ordered Jordan form and g(X) has no

constant. To see why this normalization applies to our case, consider an arbitrary K matrix

with decomposition K = UλU−1, where λ is the diagonal matrix of real eigenvalues. Thus,

Equation (31) is observationally equivalent to

f̃n =δ0 + δ′1Uλ
nU−1Xt

=δ0 + ι′Kλ
ndiag(δ′1U)U−1Xt

=δ0 + ι′Kλ
nZt (32)
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with the restrictions that δ1 = ιK , K1 is diagonal and Zt ≡ diag(δ′1U)U−1Xt. The second

equality uses the fact that λ is diagonal. Similar arguments can be made for cases where K1

has complex eigenvalues (along the lines of Joslin, Singleton, and Zhu, 2011).

4.3 Yield portfolios as risk factors

Stack J forwards in the vector Yt = (fn1,t, ..., fnJ ,t)
′ and construct the corresponding

vector of transformed forwards by Ỹt = (f̃n1,t, ..., f̃nJ ,t)
′:

Ỹt = AX +BXXt, (33)

where the coefficients are obtained by stacking coefficients in Equation (31). Note that the

well-known “shadow rate,” st, is a special case with the inversion applied to the one-period

forward rate:

st ≡ f̃0 = u−1(θ, f0,t) = δ0 + δ′1Xt.

Next, consider N ≤ J portfolios of Ỹt with an N × J loadings matrix, W ,

Pt = WỸt, (34)

which are measured without errors, Pt = Pot , as in Joslin, Singleton, and Zhu (2011), and

which can be used to uncover the risk factors:

Xt = (WBX)−1(Pt −WAX). (35)

Substituting in Equation (31), we can express the transformed forward rates, f̃n,t, in terms of

the portfolios Pt,

f̃n,t = δ0 + ι′KK1
n(WBX)−1(Pt −WAX) = An,P +Bn,PPt, (36)

with coefficients given by

An,P = δ0 −Bn,PWAX

Bn,P = ι′KK
Q
1

n
(WBX)−1. (37)
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Stacking (36) for the relevant maturities (n1, ... , nJ), we obtain a version of the pricing

function but with Pt as risk factors on the right-hand side:

Ỹt = AP +BPPt. (38)

4.4 Historical dynamics

Assumption 1 is sufficient to establish the absence of exploitable arbitrage opportunities.

In the following, we also rely on Assumption 2 to guide our specification of the physical

dynamics for the states Xt. In particular, it is essential that the support of Xt under the

time-series measure coincides with the space X over which our bond prices are defined.12

Furthermore, for valid statistical inferences, we need Xt to be stationary and ergodic under

the time-series measure. Assumption 3 summarizes these requirements formally.

Assumption 3. The time-series dynamics of Xt admit X as support and are such that yields

for all maturities yn,t ≡ −log(Pn(Xt))/n have a joint distribution that is stationary and

ergodic.

Assumption 3 imposes mild restrictions on the evolution of Xt and accommodates virtually

all common stationary dynamics. Importantly, the dynamics of Xt may involve factors beyond

Xt. For instance, the conditional mean at time t, Et[Xt+1], may not be completely spanned by

Xt. This allows for notions of unspanned risks introduced by Joslin, Priebsch, and Singleton

(2013), Duffee (2011) and Feunou and Fontaine (2014). Likewise, the conditional variances,

Vt[Xt+1], can be constant, as in standard Gaussian DTSMs; can depend on Xt itself, as in the

AM(N) models of Dai and Singleton (2000); can depend on the history {Xt, Xt−1, . . .}, in

the spirit of the ARCH literature pioneered by Engle (1982); or can depend on the history of

other risk factors, capturing the notion of unspanned stochastic volatility in Collin-Dufresne

and Goldstein (2002), Li and Zhao (2006) and Joslin (2014).

Hence, our framework allows for general time-series specifications for Et[Xt+1] and Vt[Xt+1]

without introducing an overly restrictive connection between the mean and variance. This

is a significant departure from affine no-arbitrage term-structure models that are burdened

by a significant tension in simultaneously fitting the conditional means and the conditional

variances of yields (Dai and Singleton, 2002; Joslin and Le, 2013). Instead, we choose to

let the data speak concerning the interrelationship between mean and variance in the term

12This requirement is analogous to the requirement that the time-series and risk-neutral measures must
admit the same support (they are equivalent measures) in no-arbitrage models.
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structure. Our approach also contrasts with most implementations of Black’s non-affine,

no-arbitrage models where the variance is assumed to be constant.

To operationalize this, consider a vector of macro variables Ut that are not spanned by

yields. For simplicity, we consider joint VAR dynamics for Pt and Ut:(
Pt+1

Ut+1

)
= KP

0 +KP
1

(
Pt
Ut

)
+
√

Σt

(
εP,t+1

εU,t+1

)
, (39)

where εt ≡ (εP,t+1, εU,t+1)
′ is a standard (conditionally) Gaussian innovation with a time-

varying variance-covariance matrix, Σt. We choose a robust and parsimonious specification for

the time-varying covariance matrix, Σt. First, the N × 1 vector of variances, σ2
t = diag(Σt),

has dynamics given by

lnσ2
t = (I −B) ln σ̄2 +B lnσ2

t−1 + Aεt + γ (|Aεt| − E[|Aεt|]) , (40)

where A is an N × N matrix, and B and γ are N × N diagonal matrices. This vector-

EGARCH allows innovations to any of the risk factors to affect the variance of every other

risk factor, since the matrix A is not restricted to be diagonal. Second, we use a dynamic

conditional correlation (DCC) model for time-varying correlations (Engle, 2002). Specifically,

the correlation matrices CP,t and CU,t are defined via the following normalization of the

matrices QP,t and QU,t:

Ci,t = Qi,t./
(
diag [Qi,t]

−1/2 ⊗ diag [Qi,t]
−1/2

)
(41)

to guarantee a well-defined correlation matrix.13 QP,t and QU,t each follow

QP,t = (1− aP − bP) Q̄P + aPεP,tε
′
P,t + bPQP,t−1

QU,t = (1− aU − bU) Q̄U + aUεU,tε
′
U,t + bUQU,t−1, (42)

where ai > 0, bi > 0, ai + bi < 1 and where Q̄i is a symmetric positive definite.14 Finally, the

matrix of cross-correlations between the elements of εP,t and the elements of εU,t is set to

zero. Preliminary estimates of the cross-correlations matrix CPU,t were consistently small

and exhibited little time-series variation.

13The operator ./ is the element-by-element division of the matrix, ⊗ is the Kronecker product and diag [Qt]
is the vector whose elements are the main diagonal of Qt.

14In practice, we target σ̄2 and Q̄ using the sample covariance Σ̄ = 1
T

∑T
t=1 ε̂tε̂

′
t.
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4.5 Maximum likelihood

The parameters for the pricing function (36) are Θp = {θ, δ0, K}, subject to the restriction

that K has the Jordan form; the parameters of the conditional mean in (39) are Θm =

{KP
0 , K

P
1 }; and the parameters of the conditional variance are Θv = {A,B, γ, a, b}. The full

parametrization is given by Θ = {Θp,Θm,Θv}. For each choice of maturities n1,. . . , nJ and

loading matrix W , these parameters are identified.15

Estimation of Θ can be implemented by maximizing the log-likelihood of the observed

data Dt = (Y o
t
′, U o′

t )′,

P(Dt|It−1) =P(h(Dt)|It−1)
∣∣∣∣∂h(Dt)

∂Dt

∣∣∣∣
=P (WeY

o
t |Pt, U o

t , It−1)× P (Pt, U o
t |It−1)

∣∣∣∣∂h(Dt)

∂Dt

∣∣∣∣ , (43)

where It−1 = {D1, D2, ...Dt−1} denotes the information generated by the history of the data,

h(Dt) is a transformation of the data Dt, and We is a J −N × J matrix to be defined. The

first term in the likelihood corresponds to the cross-section of yields measured with error

We(Y
o
t − Ŷt) ∼ N(0, σ2

eIJ−N), (44)

where Ŷt is a function of Pt and measurement errors are i.i.d. We assume that Pt and

Ut are observed without measurement errors (Pot = Pt and U o
t = Ut). The second term,

P (Pt, U o
t |It−1) is also a Gaussian density, which can be easily derived from Equations (39)-(42).

The final term in the likelihood is the Jacobian of the transformation

h(Dt) =

 Wef
o
t

Wu−1(θ, f ot )

Ut

 , (45)

where we note that the second entry Wg(f ot , θ) gives the observed portfolios Pt. The Jacobian

15We can then apply recent advances in the estimation of affine models. See, for example, Joslin, Singleton,
and Zhu (2011), Joslin, Le, and Singleton (2013), Hamilton and Wu (2011), Adrian, Crump, and Moench
(2013), and Diez de los Rios (2015).
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is given by evaluating the first-order derivative of h(Dt) with respect to Dt:

∂h(Dt)

∂Dt

=


(

We

W ∂u−1

∂f
(f ot , θ)

)
0J×M

0M×J IM

 , (46)

leading to ∣∣∣∣∂h(Dt)

∂Dt

∣∣∣∣ =

∣∣∣∣∣
(

We

W ∂u−1

∂f
(f ot , θ)

)∣∣∣∣∣ . (47)

In practice, the choice of the matrices W and We must satisfy the restriction that Equation (47)

is different from zero. Otherwise, the likelihood in Equation (43) would be singular. In other

words, the matrix (
We

W ∂u−1

∂f
(f ot , θ)

)
must be invertible almost everywhere. In practice, we choose W, as the loadings on the first

N yield principal components, and we choose WeYt, selecting J −N elements of Yt.

4.6 Term-structure models with positive yields

Finally, we choose a specification of m(·) = u(θ, ·), nesting both the linear and the max

cases, which is consistent with P1-P3. Specifically,

m(Xt) = lb(θ) + θ1 log(1 + θ2 exp((δ0 + δ′1Xt)/θ1))

lb(θ) = −θ1 log(1 + θ2), (48)

where the parameter θ = (θ1, θ2)
′ controls the lower bound and the curvature of the mapping

between the shadow rate st ≡ δ0 + δ′1Xt and the observed rate u(θ, s). We calibrate θ2 so

that m(·) ≥ lb, where lb is the lowest sample value for the one-period yield. Equation (48) is

a generalization of the logistic function.16

Figure 5 shows the one-period bond yield u(θ, s) as a function of s for different values of

the lower bound and curvature parameters. We have that u(θ, st) always crosses the origin

when st = 0 and that its curvature quickly disappears for large values of st. One can easily

16The logistic transformation P1(st) = 1/(1 + est) leads to one natural choice: m(st) = log(1 + exp(st)),
where all forward rates remain positive.

21



show that u(θ, s) converges to the linear function as θ1 →∞ (keeping θ2 fixed). We also have

that u(θ, s) converges to the max function as θ1 → 0 (again, keeping θ2 fixed). Therefore,

our specification is closely related both to standard affine models and to the formulation in

Black (1995), based on the max function for the short rate.
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Figure 5: Different shapes of the short-rate function u(θ, s) with corresponding lower bounds at
-0.5%, -0.25% and -0.05%. The values for θ are (0.80, 0.87), (0.54, 0.59) and (0.032, 0.032).

Black (1995) uses the max function to obtain a positive overnight rate, i.e., rt = max(st, 0).

This choice is economically appealing, but it is not consistent with P3 (invertibility) because of

the kink in the max function. Our approach captures the essence of Black’s formulation. The

difference between the one-period yield in Equation (48) and the max function is analogous

to the difference between the option value and its payoff. The overnight rate exhibits a kink

max(st, 0) at the strike st = 0, but short-term bond yields (contracts linked to the overnight

rate) may be positive even if st = 0. Hence, yields combine the intrinsic value and time

value of an option. This observation is a common feature of term-structure models with a

short-rate equation governed by a max function (e.g., see Kim and Singleton, 2012, Figure

5a).

5 Results–Affine Models Before 2009

This section shows that affine Gaussian DTSMs and TTSMs with constant variance are

indistinguishable, but that an extended affine TTSM with flexible second moments captures
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time-varying volatility and correlations of yields. Cieslak and Povala (2011) show that even a

4-factor A1(4) does not capture these stylized facts.

5.1 Model nomenclature

We consider term-structure models with K = 3 risk factors, where the matrix of portfolio

weights in Equation (35) is obtained from principal component analysis applied to our sample

of yields. Figure 6 shows the time series of risk factors.17 We estimate three classes of

affine models. First, we estimate the standard 3-factor Gaussian DTSM using the canonical

form in Joslin, Singleton, and Zhu (2011), which we label A (this corresponds to the A0(3)

model in Dai and Singleton, 2000). This model imposes two important restrictions: (i) the

computation of bond prices under the risk-neutral measure connects the mean and variance

of the risk factors via the pricing equation, and (ii) the variances and correlations of the

risk factors are constant Σt = Σ. Second, we estimate an affine version of our 3-factor

TTSM with constant variance, which we label AT (affine TTSM) and an extended version

with unrestricted EGARCH and DCC dynamics (Equations (40-42)), which we label ATV

(affine TTSM with time-varying variance). In all cases, the short-rate equation is affine (i.e.,

θ → ∞). We also exclude macro variables in this section for comparability with existing

results. We estimate non-affine versions of these models, with and without macro variables,

in the following section.
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Figure 6: Pricing portfolios: Monthly data from January 1990 to December 2014.

17Inspection of the weights (not reported) reveal that these portfolios have the standard interpretation in
terms of level, slope and curvature factors.
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5.2 Fitting yields and bond risk premiums

Table 2 provides summary statistics on the pricing errors from models A, AT and ATV .

These models are indistinguishable based on pricing errors. Since the pricing factors are

the same across these models, the small differences between pricing errors imply that factor

loadings are similar across models. Figure 17 in the appendix compares the factor loadings,

Bn,P . The differences are so small that we cannot distinguish them visually.

A AT ATV
RMSE ME RMSE ME RMSE ME

1yr 6.1 -1.5 6.1 -1.5 6.1 -1.5
3yr 2.5 -0.7 2.5 -0.7 2.5 -0.7
5yr 2.3 -0.4 2.3 -0.4 2.3 -0.4
10yr 3.0 -1.0 3.0 -1.0 3.0 -1.1

Table 2: Yield pricing errors from models A, AT and ATV are indistinguishable. Root-mean-
squared error (RMSE) and mean error (ME) in annualized basis points.

Following Dai and Singleton (2002), we use Campbell-Shiller (CS) regressions (Campbell

and Shiller, 1991) to next check whether each model captures variations in the bond risk

premium. Figure 7 shows OLS estimates of the coefficients from CS predictability regressions

in our sample alongside estimates derived from three term-structure models. We repeat the

exercise for monthly and quarterly returns. In both cases, the model-implied coefficients are

remarkably close to each other.18

Summing up, the linear model, with constant variance, constructed based on an explicit

no-arbitrage argument, is indistinguishable from a linear model with constant variance

constructed within our new framework. This was expected. Moving between models A and

AT , the only difference is the introduction of the Jensen term in the equation for An,X .

Figure 2 shows that this term is very small. Then, moving between models AT and ATV ,

the pricing equations for yields are identical except for differences in parameter estimates.

But the estimates for δ0 and K are nearly identical across models (the factor structure in the

cross-section of yields is measured very precisely).

18The A0(3) model does not match the OLS coefficients as closely as reported by Dai and Singleton (2002)
in a sample from 1970 to 1995. Noticeably, the expectation hypothesis is not rejected for the shortest maturity
in our sample, which could be due to the FOMC’s increased transparency since the early 1990s.
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Figure 7: Model-implied Campbell-Shiller coefficients are close to each other. Results from
monthly and quarterly CS predictability regressions estimated with OLS and coefficients implied
from different 3-factor models: A, AT and ATV . Monthly data, December 1990 to June 2008.

5.3 Volatilities and correlations of yields

Existing affine DTSMs face a well-known tension in fitting the cross-section and the

(time-series) variance of yields. This section assesses whether the ATV model can also

capture the stylized facts of the variances and correlations of yields. Figure 8 compares

model-implied conditional volatilities with EGARCH volatility estimates for the 1-year and

5-year yields in Panels a and b, respectively.19 Our framework produces a close fit to the

conditional volatility of yields. The fit from the ATV model is remarkably close throughout

the sample and across yield maturities.

The results show that the volatilities of yield peak at times when the Federal Reserve

is loosening its target rate in the midst of a recession. We also find significant variation

across the term structure of yield volatility. To see this, Figure 8 compares the model-implied

volatility for the 1-month, 1-year and 10-year yields (Panels c and d). The volatility of the

1-year yield is generally higher than the volatility at both the shorter and longer maturities

(i.e., the red line generally sits on top of the others), but this hump in the term structure of

volatility varies substantially over the sample.

Figure 9 reports the difference between the volatility of 1-year and 1-month yields, as

implied by the ATV 3-factor model. This provides a direct measure of the term structure

hump. The hump declines substantially in 1991, in 2001 and in 2007, which correspond to

the peaks in the level of volatility in Figure 8.

19The EGARCH is used as a benchmark by Kim and Singleton (2012) and Joslin (2014). For comparability
between models, the yield innovations in the unrestricted EGARCH(1,1) are computed relative to the
projection of current yields on the lagged principal components, as in the VAR(1).
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Necessarily, variations in the humps are entirely driven by the time-varying volatility

and correlation of the risk factors, since the factor loadings are constant. What is less

evident, and still undocumented (to the best of our knowledge), is that the changes in

the volatility term structure imply that the nature and explanatory power of the principal

components of yields change over time. Figure 10 shows the explanatory power of the first two

(conditional) components at each date. We stress that these components do not correspond

to the unconditional (full-sample) principal components used to construct the risk factors

Pt.20 The importance of the level factor varies between 85 and 95 percent over the sample.

By construction, the explanatory power of the other components must vary in the opposite

direction. We find that the importance of the slope factor rises by as much as 10 percent

in absolute terms (to 15 percent) in these episodes where the short rate is relatively more

volatile, as in Figure 9 (the hump shape in volatility is less pronounced).

Our model captures the following stylized facts about the yield volatility term structure.

First, the early stages of a recession are characterized by lower yields (higher bond prices) but

higher volatility.21 Second, we confirm that the volatility of yields exhibits a downward-sloping

term structure but with a hump shape around the maturity of one or two years (Piazzesi,

2005). Third, the volatility of the short rate increases relative to other rates during episodes

where the Federal Reserve loosens its policy rate (consistent with Cieslak and Povala, 2015).

Finally, the explanatory power of the first conditional principal component falls in these

episodes, but the explanatory power of the second component rises. Note that the conditional

volatility implied by our model is not spanned by contemporaneous yields, which is consistent

with Collin-Dufresne, Goldstein, and Jones (2009), but derived from the history of shocks to

the yield curve using the EGARCH-DCC filter.

6 Results–Non-Affine Models

This section uses the full-sample period, including six years of data when the target rate

was tied to a lower bound. Consistent with Joslin, Priebsch, and Singleton (2013), we also add

macro variables to the dynamics of the risk factors. We estimate three term-structure models.

First, we re-estimate the ATV model. Second, we estimate one non-linear model where

20At each date, we simulate several paths of the risk factors and compute the corresponding yields. We
then apply PCA to the cross-section of yields across simulated paths. This produces principal components
with different loadings at each date. This procedure measures the strength of the factor structure in yields.

21This contrasts with results based on data covering the late 1970s and early 1980s, when the level and
volatility of yields were positively correlated.
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the short rate is given by Equation (48), but assume constant variances for the risk factors.

This model is closely comparable to existing implementations of Black’s term-structure

model. Finally, we estimate a non-linear model allowing for time-varying covariances as

in Equations (39)-(42). We call these two non-linear positive TTMMs, with constant or

time-varying volatility, PT and PTV , respectively.

6.1 Model fit and bond risk premium

Table 3 compares the root-mean-squared errors (RMSEs) and mean errors (MEs), all in

annualized basis points, from the ATV , PT and PTV models. Overall, pricing errors are

very similar across models. If anything, non-linear models provide a small reduction in bias.

ATV PT PTV
RMSE ME RMSE ME RMSE ME

Yields

1yr 5.5 -1.2 5.6 -1.2 5.6 -1.1
3yr 2.5 -1.1 2.5 -0.9 2.5 -0.9
5yr 2.9 -0.6 2.9 -0.5 2.9 -0.5
10yr 3.8 -1.7 3.6 -1.5 3.6 -1.5

Table 3: Full-sample summary statistics of pricing are similar across models. RMSE = root-mean-
squared error; ME = mean error (all in basis points).

We also compare differences between term premiums across models.22 We define the

term premium as the difference between the Q-expectation and the P-expectation. We can

compute both terms from the models:

tp
(n)
t =

12

n

(
(EQ

t

[
n−1∑
i=0

rt+i

]
− EP

t

[
n−1∑
i=0

rt+i

])
= ŷ

(n)
t −

12

n
EP
t

[
n−1∑
i=0

rt+i

]
. (49)

Figure 11 shows that the 1-year and 2-year term premium estimates are very different

in the affine model (Panels a and b, respectively). Term premium estimates appear biased

upward by as much as 30 basis points between 2009 and 2011 and, after switching sign, are

biased downward by as much as 40 basis points between 2011 and 2013. Term premiums

from the non-affine models are more stable and do not reach as deeply into negative territory.

22Section 5 emphasized the comparison with the linear risk CS premium model. Yields become non-linear
near the lower bound and this benchmark becomes inappropriate. Section A.2 reports significant changes in
estimated CS coefficients owing to the lower bounds.
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The differences between term premium estimates are driven by the differences between

long-horizon forward forecasts (the second term in Equation (49)). Figure 11 also compares

1-year- and 2-year-ahead forecasts of the short rate from different models (Panels c and d,

respectively). One-year-ahead forecasts of the short rate turn negative in the linear model,

reaching as low as -0.5%. In addition, short-rate forecasts from the affine model can diverge

substantially and extend far into the future. Figure 12 shows the term structure of short-rate

forecasts on two given dates—December 2010 and August 2012—across horizons from one

month up to 10 years ahead. Figure 13 reports the Sharpe ratio for an investment horizon

of one year and for bonds with two and 10 years to maturity, computed from the different

models.

As expected, the bias in the term-structure estimates from the linear model is due to

severe downward bias in short-rate forecasts. The poor forecasts suggest that the model

estimates can fit the cross-section of yields near the lower bound, avoiding breaches of the

lower bound, but only at the added cost of poor time-series properties.23 Their yield forecasts

are based on a distribution that has significant mass below zero, and the precision of their

forecasts is poor (Kim and Priebsch, 2013; Christensen and Rudebusch, 2013; Bauer and

Rudebusch, 2013).

Figure 14 displays the expected liftoff for the PT and PTV models, starting in 2009. Of

course, the expected liftoff time remains zero until the end of 2008 when the shadow rate

first passes below zero. The results show that the expected liftoff time is very similar across

models, slowly increasing until the summer of 2011, and reaching 1.5 years at the time. This

is consistent with survey forecasts by primary dealers. The median liftoff forecast was for the

fourth quarter of 2012. At the end of our sample, liftoff estimates were pointing toward the

middle of 2015, again consistent with survey forecasts made at the same time.

6.2 Volatility

The presence of a lower bound changes the fundamental dynamics of yield volatility.

The lower bound compresses the volatility of yields with short maturities but, on the other

hand, the volatility of yields with long maturities remains elevated and continues to reveal

the changing variance of the risk factors. For instance, Swanson and Williams (2014) show

that the response of long-term yields to macroeconomic news remains high, even when the

23Note that forecasts from the 2-factor affine model, which has fewer parameters, do not diverge as much,
providing additional evidence that the 3-factor affine model uses additional parameters to offer a better fit in
the cross-section of yields but at a cost in the time series (unreported).
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response of short-term yields is pinned down to zero.

Figure 15 shows the volatilities of the 1-year and 10-year yields throughout the whole

sample (Panels a and b) and in the period where the short rate is near its lower bound

(Panels c and d). The ATV and PTV provide a very similar picture of volatilities before

2008. This should be expected, since the short-rate equation is nearly linear in the PTV

model when yields are high (see Figure 5), and since these models share the same variance

dynamics for the risk factors.

Of course, these two models draw a very different picture after 2008, where the linear AT

model cannot capture the volatility compression for short-maturity yields. Panels a and c

illustrate this contrast in the case of the 1-year yield. The volatility from the AND3−DCC
model is twice the volatility in the PTV model. Repeating this exercise for shorter maturities

reveals an even starker contrast.

The PT model implies a constant variance for the risk factor. Nonetheless, Panel c shows

that accounting for the lower bound is enough to capture the volatility of short-term yields

since 2008. The volatility compression implies that the term structure of volatility is strictly

upward sloping (the hump disappears). But Panel d shows that the assumption of constant

risk-factor volatility (embedded in the PT model) fails to capture the volatility dynamics at

longer maturities. The 10-year yield volatility implied by the model is almost constant.

Summing up, our new TTSM resolves two tensions that existing models face when

fitting the volatility of yields. To see the first tension, compare the periods before and after

2008. Tractable implementations of Black’s term-structure models can match the volatility

dynamics of (short-term) yields after, but not before, 2008.24 In contrast, affine models with

time-varying volatility can match the volatility term structure before, but not after, 2008. To

see the second tension, compare the volatility of short-term and long-term yields after 2008.

A linear model with changing volatility captures the volatility dynamics of long-term yields,

but does not match the volatility compression of short-term yields. Black’s term-structure

models achieve exactly the opposite. The PTV can match the yield volatility at the opposite

ends of the yield curve, both before and after 2008 (see Panels c and d of Figure 15).

24Priebsch, 2013, in continuous time, and Wu and Xia, 2013, in discrete time, introduce tractable second-
order approximations based on series expansion of yields. These approximations rely on the assumption of
constant variance for the risk factors.
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6.3 Correlations

The volatility compression at short maturities also changes the correlations between yields.

As in Section 5.3, we use simulations to compute the explanatory power of the (conditional)

principal components of yields at each date. Figure 16 reports the results for the first two

components (Panels a and b). The explanatory power of the first component is always high,

typically close to 90 percent, but with three significant declines to less than 85 percent around

1991, 2000 and 2007. Our full-sample estimates produce pre-2008 results that are consistent

with those presented in Section 5 (see Figure 10). By construction, this reduced explanatory

content is captured by other components. Panel b shows that the second principal component

explains more than 15 percent in these episodes (the explanatory power of the third PC is

below 1 percent—unreported). Obviously, the linear, or Black, model with constant volatility

fails to capture the changing correlation structure of yields in that period.

The explanatory power of the first component quickly rises to 95 percent after 2008 in

both PT and PTV models, but the linear ATV model fails to capture this sharp increase.

The explanatory power of the second component is close to 5 percent and that of the third

component is close to 1 percent. Intuitively, the volatility compression at the front of the

term structure implies that the level and slope factors become highly correlated. Panel c

confirms this intuition, showing the correlation between the first and second components of

yields in our simulation. The conditional correlation between the first and second PCs varies

over every business cycle, going from positive to negative during most loosening cycles and

increasing toward an average near 0.2 at the end of tightening cycle. The recent period is

simply an extreme example of this changing correlation.25

7 Conclusion

We introduce a family of tractable term-structure models where bond prices are analytical

by construction and very nearly arbitrage-free. Our results show how this new class of

model captures the dynamics of yields and yield volatility before and after 2008, when yields

reach the lower bound. Variations in the volatility term structure remain a challenge for

existing models. The family of TTSMs is large and permits flexible specifications of the

dynamic interactions between yield and macro variables. This should lead future research to

25There is no necessary connection between the average conditional correlation and the unconditional
correlation. The law of iterated covariance cov(X,Y ) = E[cov(X,Y | Z)] + cov(E[X | Z], E[Y | Z]) also
involves terms from the conditional mean equation.
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revisit several results involving the trade-off between the risk premium and yield volatility

faced by investors, the influence of conventional and unconventional policy actions on this

trade-off (including quantitative easing and forward guidance), and the correlations among

international term structures (when far from or near to their respective lower bounds).

31



(a
)

1-
ye

a
r

y
ie

ld
vo

la
ti

li
ty

19
90

19
92

19
95

19
97

20
00

20
02

20
05

20
07

20
10

0.
2

0.
250.
3

0.
350.
4

0.
45

T
im

e

Percentage

 

 
E

G
A

R
C

H
A

T
A

T
V

(b
)

5-
ye

ar
y
ie

ld
vo

la
ti

li
ty

19
90

19
92

19
95

19
97

20
00

20
02

20
05

20
07

20
10

0.
2

0.
250.
3

0.
350.
4

T
im

e

Percentage

 

 
E

G
A

R
C

H
A

T
A

T
V

(c
)

3-
m

o
n
th

s
a
h

ea
d

vo
la

ti
li

ty

19
90

19
92

19
95

19
97

20
00

20
02

20
05

20
07

20
10

1

1.
52

2.
5

T
im

e

Percentage

 

 

  3  2
4

12
0

(d
)

12
-m

on
th

s
ah

ea
d

vo
la

ti
li

ty

19
90

19
92

19
95

19
97

20
00

20
02

20
05

20
07

20
10

0.
6

0.
81

1.
2

1.
4

T
im

e

Percentage

 

 

  3  2
4

12
0

F
ig
u
re

8
:

M
o
d

el
-i

m
p

li
ed

y
ie

ld
v
o
la

ti
li

ti
es

.
P

a
n

el
s

8
a

a
n

d
8
b

:
1
-m

o
n
th

v
o
la

ti
li

ty
es

ti
m

a
te

s
a
re

cl
o
se

to
E

G
A

R
C

H
es

ti
m

a
te

s.
C

o
n

d
it

io
n

a
l

vo
la

ti
li
ty

fo
r

1-
ye

ar
an

d
5-

ye
ar

y
ie

ld
s

es
ti

m
at

ed
fr

om
u
n
iv

ar
ia

te
E

G
A

R
C

H
an

d
fr

om
th

e
A
T

an
d
A
T
V

3-
fa

ct
or

m
o
d
el

s.
P

an
el

s
8c

an
d

8d
:

th
e

co
n
d
it

io
n
al

vo
la

ti
li
ty

of
th

e
te

rm
st

ru
ct

u
re

of
y
ie

ld
s

ch
an

ge
s

ov
er

ti
m

e,
d
is

p
la

y
in

g
a

co
u
n
te

rc
y
cl

ic
al

h
u
m

p
sh

ap
e.

V
ol

at
il
it

y
es

ti
m

at
es

3
m

on
th

s
an

d
12

m
on

th
s

ah
ea

d
fo

r
th

e
3-

m
on

th
,

24
-m

on
th

an
d

12
0-

m
on

th
y
ie

ld
s,

im
p
li
ed

b
y

th
e
A
T
V

3-
fa

ct
or

m
o
d
el

.
M

on
th

ly
d
at

a,
D

ec
em

b
er

19
90

to
D

ec
em

b
er

20
0
8.

32



1990 1992 1995 1997 2000 2002 2005 2007 2010

−0.05

0

0.05

Time

P
er

ce
nt

ag
e

Figure 9: The yield volatility term-structure hump changes over time. Difference between the 12-month
conditional volatility for the 1-year and 1-month yields, implied by the ATV 3-factor model.
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Figure 10: The explanatory power of the level and slope factors changes over time. Results from conditional
principal component analysis of yields based on the model. At each date, we simulate yields one step ahead
and apply PCA across the simulated paths. We report the percentage of variance explained by the first two
principal components at each date. Monthly data, December 1990 to December 2008.
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(a) December 2010
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(b) August 2012
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Figure 12: Forecasts of the short rate from affine models can differ even at long horizons. Forecasts of
the short rate from different models as of December 2010 and as of August 2012 across forecast horizons
between 1 month and 10 years.
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(b) 10-year bond
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Figure 13: Conditional Sharpe Ratios. Time series of 1-year conditional Sharpe ratios for a 2-year and
10-year bond. Forecasts for the period between July 2007 and December 2013.
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(b) Liftoff Distribution
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Figure 14: Expected time until the short-rate liftoff and distribution of time until the short-rate liftoff.
Monthly data, August 2007 to December 2014.
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(a) PC1
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(b) PC2
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(c) corr(PC1,PC2)
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Figure 16: The first component of yields plays a greater role near the lower bound.

Panels a and b: explanatory power of the first and second conditional principal components of yields.

Results from conditional principal component analysis of yields based on the model. At each date, we

simulate yields one step ahead and apply PCA across the simulated paths. We report the percentage of

variance explained by the first two principal components at each date. Panel c: conditional correlations

between the first and second components of yields. Monthly data, 1990-2014.
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A Appendix

A.1 Loadings
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Figure 17: Portfolios loadings are almost identical across linear Gaussian models. Constant and risk-factor
loadings An,P and Bn,P across models A, AT and ATV . Monthly data from CRSP and GSW, January
1990-June 2008.

A.2 CS regressions before and after 2008

The CS risk-premium regressions are linear and do not provide a reliable benchmark in a sample
including episodes with interest rate at the lower bound. If the short rate is fixed, then a steeper slope
predicts a faster decline of longer-term yields as they mature, and CS regressions should produce large
negative coefficients after 2008. To check this, Figure 18 compares regression estimates of CS coefficients in
subsamples before and after December 2008. Coefficients in the first sample correspond to the benchmark
case in Figure 7 and display the well-known pattern. Estimates are close to one for very short maturities–a
higher slope predicts a higher short rate–but the estimates decline gradually to values around -2 for longer
maturities–a higher slope predicts higher bond returns. The pattern is very different in the second subsample.
Estimates start close to zero for the shortest maturity. This was expected: the slope has little predictive
power when the short rate is pinned down to its lower bound. Estimates decline rapidly for longer maturities,
ranging between -2 and -7 at maturities between 1 and 10 years.
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Figure 18: Coefficients from Campbell-Shiller regressions are much more negative after 2008, reflecting
the effect of non-linearities as the short rate reaches its lower bound. Results from regressions with a
one-month horizon for bonds with maturities between 3 months and 10 years, in two samples before and
after December 2008, respectively. Monthly data from 1990 to 2014.
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Figure 19: The volatility of yields exhibits a clear break in 2008. Likelihood-ratio test statistics for breaks
in all parameters of univariate EGARCH estimated for yields with maturities of 3 months, 1, 2, 5 and 10
years, where yield innovations are obtained from projections on lagged principal components from all yields.
Monthly data from 1990 to 2014.

A.3 Breaks in volatility

The behaviour of yields’ volatilities also changes abruptly after 2008. To see this, we estimated univariate
EGARCH across different maturities, but allowing for one break in every parameter. Since the optimal
break date is unknown, we re-estimate the EGARCH but varying the break date between December 2006
and December 2010. Figure 19 reports the likelihood ratio (times 2) between the EGARCH estimated either
without a break or with one break on December 2008, across a range of maturities. For every maturity, the
sup test from Andrews (1993) rejects the null (absence of a break) at standard significance level for every
maturity, yielding p-values that are essentially zero for maturities of two years or less.26

The test places the break date between June 2008 and June 2009 in almost every case.

26We estimate univariate EGARCH models based on the forecasting errors from a projection of individual yields on
lagged yield PCs. We allow for a break in every parameter. With 8 parameters, the critical values are 20.5 and 25.2
at the 1% and 5% significance levels, respectively.
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B Proofs

B.1 Proof of Proposition 1

B.1.1 Discussions on limn→∞ Pn(Xt)

Given that

Pn(Xt) = exp

(
−
n−1∑
i=0

m(g◦i(Xt))

)
,

lim
n→∞

Pn(Xt)→ 0,

if and only if

lim
n→∞

n−1∑
i=0

m(g◦i(Xt))→ +∞.

Given that m(X) ≥ 0,
∑n−1

i=0 m(g◦i(Xt)) is a positive term series and, hence, either converges or di-
verges to +∞. If we further assume that m(X) ≥ lb, with lb > 0, then we can check easily that∑n−1

i=0 m(g◦i(Xt)) diverges to +∞, and limn→∞ Pn(Xt) → 0. Indeed, if m(X) ≥ lb, with lb > 0, we have
n× lb ≤

∑n−1
i=0 m(g◦i(Xt)), which implies that

∑∞
i=0m(g◦i(Xt)) =∞.

B.1.2 Discussions on limn→∞ fn,t
Next, we discuss convergence of the forward rate and yield. To do that, we need to make further

assumptions on function g(·).
The forward rate is

fn,t = m(g◦n(Xt)),

which converges if the sequence g◦n(Xt)
∞
n=0 converges. g◦n(Xt)

∞
n=0 is also known as the Picard sequence,

and its convergence has been studied in the mathematics literature. If X is a complete subset (i.e., every
Cauchy sequence converges in X) of RK , and g(·) is a contraction (i.e., there exists L ∈ [0, 1) such that
‖g(X)− g(Y )‖ ≤ L‖X − Y ‖ for all X,Y ∈ X), then the “contraction mapping principle,” also known as
the Banach fixed-point theorem, states that:

1. g(·) has a unique fixed point, say X∗ in X,

2. the sequence g◦n(Xt)
∞
n=0 in X converges to X∗.

Hence, if g(·) is a contraction, and m(·) is a continuous function, then the forward rate fn,t converges to
m(X∗).

B.1.3 Discussions on limn→∞ yn,t
Turning next to yield, the n-period zero-coupon yield is given by

yn,t = (1/n)

n−1∑
i=0

fi,t.

Let us then recall the following definition and result:

• Definition: Two sequences xnn≥0 and ynn≥0 of positive real numbers will be called
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asymptotic if limn→∞
xn
yn

= 1. It is then denoted by xn ∼ yn.
• Result: If xn ∼ yn, and either sequence of partial sums,

∑n
k=1 xk or

∑n
k=1 yk, ends to ∞

as n→∞, then both partial sum sequences tend to ∞ and the partial sum sequences are
asymptotic.

Applying this result, we get that fn,t ∼ m(X∗) (i.e., limn→∞
fn,t

m(X∗) = 1.), and since
∑∞

i=0 fi,t =∞ we get

that
∑n−1

i=0 fi,t ∼
∑n−1

i=0 m(X∗). Hence,

lim
n→∞

∑n−1
i=0 fi,t

n×m(X∗)
= 1,

thus, the n-period zero-coupon yield yn,t converges to m(X∗).

B.1.4 What happens if the lower bound on m(·) is negative?

In the discussions on limn→∞ Pn(Xt) and limn→∞ yn,t, we have assumed that the lower bound on
function m(·), denoted by lb, is strictly positive. What happens if lb ≤ 0?

If we assume that g(·) is a contraction, and m(·) is continuous, then the forward rate (m(g◦n(Xt)))
converges to m(X∗) where X∗ is the fixed point of g(·) (i.e., the unique point in X satisfying g(X∗) = X∗).

If we further assume that m(X∗) > 0, it implies that there exists a strictly positive number (say ε > 0)
with m(X∗) > ε.

Applying the definition of the convergence of m(g◦n(Xt)) to m(X∗) implies that there exists an N(ε)
such that for all n ≥ N(ε), |m(g◦n(Xt))−m(X∗)| < ε.

|m(g◦n(Xt))−m(X∗)| < ε is equivalent to

m(X∗)− ε < m(g◦n(Xt)) < m(X∗) + ε.

We can then split
∑∞

n=0m(g◦i(Xt)) into two terms:

∞∑
n=0

m(g◦i(Xt)) =

N(ε)−1∑
n=0

m(g◦i(Xt)) +
∞∑

n=N(ε)

m(g◦i(Xt)).

Because m(g◦n(Xt)) > m(X∗)− ε > 0 when n ≥ N(ε), we have
∑∞

n=N(ε)m(g◦i(Xt)) = +∞.
Thus,

lim
n→∞

Pn(Xt) = exp

−N(ε)−1∑
n=0

m(g◦i(Xt))

 exp(−∞) = 0,

and yn,t converges to m(X∗).

B.2 Proof of Theorem 4

Consider again a portfolio in which the amount (in face value) invested in each n-period bond is given
by wn. To account for transaction costs, let’s assume that the set-up cost at time t of the portfolio is C0

and, to realize the cash flows at time t+ 1, the transaction cost is given by C1. The existence of transaction
costs means that C0 and C1 cannot be jointly zero. The one-period-ahead cash flows net of transaction
costs are given by

CF (Xt+1) =
∑
n

wnPn−1(Xt+1)− C1.
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Recall that the absence of arbitrage is equivalent to requiring that any portfolio with non-negative payoffs
must command a positive price. Thus, the key question here is: if CF (Xt+1) ≥ 0 for every Xt+1 ∈ X, can
we show that the price of the portfolio, net of transaction costs

Price(Xt) =
∑
n

wnPn(Xt) + C0

must be strictly positive? From Equation (2), we have

Price(Xt) =exp(−m(Xt))
∑
n

wnPn−1(g(Xt)) + C0,

=exp(−m(Xt))× (CF (g(Xt)) + C1) + C0,

=exp(−m(Xt))× CF (g(Xt)) + exp(−m(X))C1 + C0. (50)

The first term on the right-hand side of (50) is non-negative, since g(Xt) ∈ X⇒ CF (Xt) ≥ 0. Additionally,
the last two terms must add up to a strictly positive number, since C0 and C1 cannot be jointly zero. Thus,
Price(Xt) > 0 as needed.

B.3 Ruling out arbitrage opportunities

This section constructs a model that rules out arbitrage opportunities in frictionless markets. We then
construct a sequence of such models that, in the limit, approach the model proposed in Section 2.

Assumption 4. The n-period bond price Pn is determined by the following recursion for each n:

P0(X) ≡1, (51)

Pn(X) =
1

J

J∑
i=1

Pn−1(gi(X))× exp(−mi(X)), (52)

for functions gi(.) and mi(.), i = 1..J , such that gi(X) ∈ X for every X ∈ X. Let vi(X) denote the price
vector: vi(X) = (P0(gi(X)), P1(gi(X)), ..., PJ−1(gi(X)))′. We assume that the matrix obtained by stacking
the vi column by column (v1, v2, ..., vJ) is full rank for all X ∈ X.

Theorem 5. Assumption 4 rules out all arbitrage opportunities.

Proof. Consider a portfolio with non-negative payoffs:
∑

nwnPn−1(X) ≥ 0 for all X ∈ X. According to
(52), the price of this portfolio for each state is given by

∑
n

wnPn(X) =
1

J

∑
i

(
exp(−mi(X))×

∑
n

wnPn−1(gi(X))

)
. (53)

Because gi(X) ∈ X, it follows that each of the
∑

nwnPn−1(gi(X)) terms is a possible payoff from the
portfolio. Thus, these terms must be non-negative. Therefore, the price of the considered portfolio must be
non-negative. For the price of the portfolio to be zero, each of the summations

∑
nwnPn−1(gi(X)) = w·vi(X)

must be zero, where w = (w1, w2, ..., wJ)′. That is, w · (v1, v2, ..., vJ) = 0. Because (v1, v2, ..., vJ) is full
rank, it follows that the price of the portfolio can only be zero when w ≡ 0. This means that the portfolio’s
payoff must be uniformly zero across all states.

Finally, consider g1(Xt) ≡ g(Xt) and m1(Xt) ≡ m(Xt) and for i > 1, exp(−mi(Xt)) ≡ a for some constant
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a > 0, then we have

Pn(Xt) = Pn−1(g(Xt))× exp(−m(Xt)) + a

(
J∑
i=2

Pn−1(gi(Xt))/J

)
. (54)

Letting a→ 0, we obtain the model proposed in Section 2 in the limit.
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