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Abstract

Social learning models of investment provide an interesting explanation for sudden change

investment behaviour. Caplin and Leahy (1994) develop a model of social learning in which

agents learn about the true state of demand from the investment suspension decisions of o

agents. The author tests the main predictions of Caplin and Leahy’s model using a unique

database of investment projects undertaken by semiconductor plants. She finds that firms 

installing a significant new technology appear to be influenced by social learning, because 

are more likely to suspend their investment project when other suspensions occur. A 1 per 

increase in the number of other suspensions increases by 3.6 per cent the probability that 

average new technology plant will suspend their investment project. Suspensions by other 

also significantly affect plants that use conventional technology, but that effect is negative. 

conventional technology plants are less likely to suspend their investment project when oth

firms suspend, which suggests that their payoffs are strategic substitutes, as in a “war-of-attr

game.

JEL classification: E32, L63, C35
Bank classification: Business fluctuations and cycles

Résumé

Les modèles basés sur l’apprentissage social dans les décisions d’investissement explique

manière intéressante les changements brusques observés dans le comportement des inves

Caplin et Leahy (1994) ont mis au point un modèle de ce genre où les agents déduisent le

véritable état de la demande des décisions que prennent d’autres agents de suspendre leur

d’investissement. L’auteure teste les principales prédictions du modèle de Caplin et Leahy à

d’une base de données unique regroupant des informations sur les projets d’investissemen

fabricants de semiconducteurs. Il ressort de l’étude que les entreprises qui ont commencé 

installer une technologie radicalement nouvelle semblent influencées par le comportement

qu’elles observent chez leurs concurrents. Elles paraissent en effet plus enclines à surseo

projet d’investissement quand d’autres entreprises prennent une décision en ce sens. Une

de 1 % dunombre de suspensions entraîne une augmentation de 3,6 % de la probabilité de v

fabricant ayant entrepris de se doter d’une nouvelle technologie renoncer à son projet. Les

suspensions de la part d’autres agents ont aussi un effet important, mais cette fois opposé

fabricants qui optent pour une technologie courante. Ces fabricants sont moins portés à em

le pas à leurs concurrents, ce qui semble indiquer qu’ils tirent leurs bénéfices de produits q

constituent des substituts stratégiques, comme s’ils étaient engagés dans une « guerre d’u

Classification JEL : E32, L63, C35
Classification de la Banque : Cycles et fluctuations économiques
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1. Introduction 

Aggregate investment has historically been one of the most volatile components of GDP 

over the business cycle. Despite its importance, the reasons for volatility in investment 

spending, and thus one of the main sources of business cycle fluctuations, are not well 

understood. Several empirical studies find that standard neoclassical models of 

investment, including q theory, do not explain a large portion of the variation in 

investment. Several potential explanations for the poor empirical performance of 

investment models have been proposed: finance constraints, irreversibility of investment , 

measurement error in q, aggregation over heterogeneous investment goods , and the 

lumpiness of investment spending at the firm level. 1  

 

Social learning theories of investment provide an interesting explanation for investment 

volatility. Social learning is the process of gaining information from observing the 

behaviour of others.2 Conventional models of learning and investment produce fairly 

gradual changes in aggregate behaviour, but social learning models can produce abrupt 

changes, consistent with the observed patterns of aggregate investment. Since the actions 

of other agents contain information about their private beliefs, an agent may base their 

actions at least partially on what they observe others doing.  

 

Social learning theories explain phenomena such as herd behaviour and sudden changes 

in widely held beliefs. Therefore, social learning provides a means for small shocks to be 

amplified, because actions taken by a few agents can change the beliefs of many others 

and cause them to act simultaneously. This clustering of many firms’ actions can generate 

a boom or a crash in aggregate investment spending.  

 

In these models, there is uncertainty about an important state variable, such as demand, 

about which agents have private beliefs. Agents use Bayes’ rule to update their private 
                                                 

1. Caballero (1999) provides a survey and references. 
2. The literature also refers to “observational learning” or “information externalities.” 
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beliefs after an action is taken by another market participant. Since actions at least 

partially reveal an agent’s private information, many agents delay their own action to 

learn more about demand conditions by observing others. Significant actions taken by a 

few agents can thereby dramatically change the beliefs held by many others and lead to a 

sudden change in their behaviour. For example, if demand is widely believed to be 

strong, but then a few firms stop their investment projects, others may become 

pessimistic about demand and also reduce their investment spending, generating a large 

decrease in aggregate investment spending.  

 

This paper tests the implications of a model of social learning and capital investment 

developed by Caplin and Leahy (1994) (CL94). Empirical tests of social learning models 

of investment are rare; this paper provides some of the first empirical tests using capital 

investment data. I test the main social learning hypothesis from CL94 that, other things 

being equal, more suspensions by other firms increase the probability that a given firm 

will suspend its investment. I use a unique database of 258 semiconductor fabrication 

plants that had investment projects underway over the period 1995 to 2002.  

 

By studying a single industry, the heterogeneity of capital investment projects is greatly 

reduced, which makes it much simpler to control for differences in production technology 

across plants. The semiconductor industry allows a useful case study for several reasons. 

It is an economically important industry, having had worldwide shipments of $25 billion 

to $50 billion per year in 1996 U.S. dollars. From a macroeconomic perspective, it is a 

highly cyclical industry, as shown by the investment and shipments data in Figures 1 and 

2. Semiconductors are also important inputs for industries such as computers and 

telecommunications—industries that played a large role in the expansion and subsequent 

collapse in aggregate investment spending in the United States from 1995 to 2001. 

Therefore, semiconductor plants represent a large, cyclical industry that is closely 

connected to industries that led the aggregate fluctuations during the most recent business 

cycle.  
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I find that social learning is a significant factor in the decision-making process of 

semiconductor plants, but there are striking differences in the social learning behaviour of 

those investing in conventional technologies compared with those adopting a significant 

new technology.3 Semiconductor plants that use conventional technology appear to react 

in opposition to the actions of others, such that a given plant is significantly less likely to 

suspend an investment project when other plants suspend theirs. This suggests that firms 

investing in standard technology engage in a war -of-attrition game, in which suspensions 

by others increase the expected payoff from the firm’s own investment. By contrast, 

suspensions at other plants significantly increase the probability that a new technology 

plant will suspend its own project. This finding suggests that a clustering of actions due 

to social learning is more likely to occur among the new technology plants, perhaps 

because these plants face greater uncertainty, since they are uncertain about demand 

conditions and the costs of using the new technology. 

  

For both standard and new technology semiconductor plants in this study, the behaviour 

of others had a significant effect on each plant’s own suspension decision. Theory implies 

that wars of attrition and clustering behaviour can cause inefficient delays, so social 

welfare is lower than if agents acted independently, rather than waiting for other 

suspensions. Resources may be wasted as firms continue investment projects longer than 

is socially optimal in the low-demand state. My findings imply that social learning may 

explain how large overcapacities can be built up in the semiconductor industry, and that, 

if a large number of the firms are adopting new technology, there is more likely to be an 

abrupt collapse in aggregate investment. 

 

This paper is organized as follows. Section 2 reviews some of the related literature on 

social learning theory and empirical work. Section 3 provides an overview of the  

                                                 

3. The sample period covers the introduction of 12-inch wafer technology over the standard 8-
inch size. This new technology significantly increases the production capacity of 
semiconductor plants. 
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theoretical model that underpins my empirical analysis. The data are described in section 

4. The empirical methodology is explained in section 5 and the results are reported in 

section 6. Section 7 concludes. 

 2. Related Literature 

Chamley (2004) provides an excellent recent text on social learning with rational agents. 

In this section, I provide a brief survey of literature closely related to the model 

developed by CL94, which forms the theoretical basis for my empirical work. CL94 build 

an (S, s)-type model of irreversible investment, in which fixed adjustment costs lead 

firms to choose only infreque ntly when to switch from inertia to action (suspending their 

investment project).4 Agents try to predict demand at the time the investment project will 

be completed, based on their own private information about demand, creating the 

possibility for social learning from other agents’ suspensions. Project suspensions cause 

previously disparate, heterogeneous, private information to be aggregated by the market, 

and may lead to significant changes in overall beliefs and, potentially, a collapse in 

aggregate investment.  

 

Several early models of irreversible investment with uncertainty and learning, such as 

those developed by Zeira (1987, 1994), Demers (1991), Rob (1991), and Caplin and 

Leahy (1993), assume that all agents have the same information. These models tend to 

generate gradual changes, as agents learn from the outcomes of earlier investments. In 

contrast, CL94 feature heterogeneous beliefs and generate discontinuous investment 

patterns, whereby aggregate investment can collapse suddenly after the first suspensions, 

as other agents learn that demand is low. 

 

In the CL94 model, when demand is low suspensions are delayed longer than they would 

be in an equilibrium of full information-sharing. The delay occurs because, rather than 

                                                 

4. Related (S, s) papers include Blinder (1981), Caplin (1985), Caplin and Spulber (1987), 
Caballero and Engel (1991), and Caplin and Leahy (1993). 
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acting independently, firms may wait to see whether other firms suspend. Resources can 

be wasted by continuing projects when demand is low, which result s in lower social 

welfare than if the suspensions had occurred earlier. Gale (1996) reviews many social 

learning theories of  investment and shows that the prediction of socially inefficient delays 

is robust to a broad range of assumptions used in social learning models. 

 

Several social learning models, including those developed by Romer (1993), Bulow and 

Klemperer (1994), and Chamley and Gale (1994), allow heterogeneity, but take the 

differences in beliefs as given, whereas CL94 allow agents’ beliefs to evolve. More 

similar to CL94 are the early theories of information cascades developed first by 

Banerjee (1992), Bikhchandani, Hirschleifer, and Welch (1992, 1998), Lee (1992) , and 

Welch (1992). These papers also focus on the aggregation of dispersed private 

information and social learning, which can lead to dramatic changes in beliefs. The key 

difference is that CL94 endogenize the timing of the action that leads to the information 

cascade, whereas the other models impose an exogenous order on the timing of agents’ 

decisions.  

 

Recent social learning investment models include Caplin and Leahy (1998) (CL98), and 

Hovarth, Schivardi, and Woywode  (2001). CL98 use a search framework to consider 

information aggregation and endogenous timing in the context of the decision on whether 

to enter a property market with uncertain demand. Their model also generates socially 

inefficient delay and a discontinuous pattern of activity. CL98 conclude that their model 

explains the observed behaviour of the retail property boom in New York in the 1990s.  

Hovarth, Schivardi, and Woywode  (2001) develop a model of social learning and firm 

entry and exit, similar to that developed by CL94. Their model can generate either 

discontinuous or gradual patterns of entry, depending on the assumptions of how 

uncertainty is resolved. They find that the predictions of their model are consistent with 

the observed empirical patterns of mass entry and exit in the beer, automotive , and tire 

industries in the United States in the late nineteenth and early twentieth centuries.  
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2.1 Empirical literature 

 
Brock and Durlauf (2001) discuss some applications of social learning models, and 

examine the main econometric problems involved in estimating them. Most empirical 

studies of social learning focus on individual behaviour. Although social learning models 

often examine investment decisions, few authors test social learning theories empirically 

with data on firms. Therefore , this study helps to develop the empirical literature on 

social learning.5 

 

Two recent studies of technology adoption and social learning, by Foster and Rosenzweig 

(1995) and Munshi (2004), test for social learning by studying the experience of Indian 

farmers in adopting new high-yield varieties of crops. Both find evidence of social 

learning. A farmer’s decision to adopt a new technology depends significantly on the 

behaviour of his or her neighbours. Foster and Rosenzweig find that learning from the 

experiences of  neighbours significantly increases a farmer’s own rates of technology 

adoption and profitability. Munshi compares social learning in the adoption of seed 

varieties under different information conditions. He finds that the effects of social 

learning are stronger when agents’ characteristics are more homogeneous, and, 

conversely, that social learning is weaker in a heterogeneous population. Miguel and 

Kramer (2003) study an unsuccessful attempt to convince individuals to adopt drug 

treatment in Kenya. Their findings are interesting because social learning had a 

significant effect on the non-adoption of technology.  

 

Guiso and Schivardi (2000) study the labour force adjustment decisions of firms and the 

influence of social learning. Using employment data from manufacturing firms in Italy, 

                                                 

5. The literature on social learning and investment discussed in this paper constitutes a 
relatively small part of the literature on social interactions, and is related to the social 
capital literature. Models of social interactions have a wide range of applications. Some of 
the most active areas of research thus far are: neighbourhood influences on socioeconomic 
outcomes, such as education attainment, income, and labour force participation; spatial 
agglomeration; technology choices; interdependent preferences; and anti-social behaviour. 
See Brock and Durlauf (2001) for references. 
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they find that the actions of similar neighbouring firms significantly affect the labour 

force adjustment of a firm, but that the actions of dissimilar or non-neighbouring firms 

have no influence. Guiso and Schivardi’s results imply that social learning is a significant 

factor in explaining the employment adjustment behaviour of firms that are exposed to 

information externalities. Furthermore, they find that extreme adjustments by like firms 

have a stronger influence than average adjustments, and that small firms appear to depend 

more on social learning than do larger firms.  

3. The Theoretical Framework 

CL94 model a firm’s decision to continue or to suspend an investment project that takes 

time to build. Firms are assumed to be risk-neutral and small relative to the whole 

market, taking prices as given and maximizing the expected value of profits.  During the 

life of the project, each firm gathers information on the state of final demand and then 

decides in each period whether to continue, temporarily suspend, reactivate, or cancel the 

project. The choices depend on the firm’s perception of the true state of demand, which is 

either high or low. The firm pays an entry cost of κ > 1 to initiate the investment. 

Continuing involves a cost per period assumed to be one, and the cost to suspend is 

assumed to be zero. Reactivating a suspended project involves an additional cost of µκ ∈ 

[1,κ].  

 

Firms use three sources of information to form beliefs about what the state of demand 

will be for a project when it is completed. First, there is the ex ante common prior that 

demand in period T can be either high or low, with equal probability. Second, in each 

period, the firm receives private information in the form of a noisy signal, either “good” 

or “bad.” The information content of a firm’s private signals is reflected in variable p ∈ 

[0.5, 1], the probability that a firm receives a good signal when demand is actually high. 

The third source of information is the firm’s observations of the history of decisions  

made by all other firms regarding entry, continuation, suspension, reactivation, and 

cancellation. This information gained from observing others is the social learning aspect 

of the model. Each period, the firm updates its beliefs using Bayes’ rule to incorporate 
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the complete history of decisions made by other firms and the private signals it has 

received so far.  

 

CL94 solve for the set of symmetric Nash equilibria in which all firms follow a strategy 

that is optimal, given the information revealed when others follow the same strategy. 

Note that , when all firms do the same thing, there is no release of new private information 

to other market participants. For example, if all firms continue , there is no way to tell 

which firms have received good or bad signals and there is no social learning. Once the 

first suspensions occur, however, the public information available to the market changes 

and social learning occurs. 

 

A key feature of the CL94 model is that the timing of the first suspensions is endogenous, 

because the most pessimistic firms (those receiving an unbroken series of bad signals) 

will always be the first to suspend. The most pessimistic firms suspend first because they 

judge the cost of continuing to be greater than the option of delaying to learn more about 

demand conditions. Social learning occurs as follows. The remaining firms are less 

pessimistic, so they delay longer to learn more about the state of demand from the actions 

of others, hoping to avoid the cost of wrongly suspending their investment. Therefore, all 

the most pessimistic firms will suspend first in period t, and the remaining firms will wait 

until period t + 1 to learn from the first who suspended what the state of demand will be. 

If a high proportion of firms suspend in period t, the remaining firms will know there is a 

lot of pessimism and conclude that demand is low, so they will suspend en masse in 

period t + 1. If the proportion of the first to suspend is small, the remaining firms will 

conclude that demand is high and continue, while the suspended firms will reactivate 

their projects and incur a re-entry cost, µκ.  Further details on the CL94 model are 

provided in the appendix.  

 

Consistent with other models, CL94 predict that delays that arise from social learning 

reduce social welfare. Resources are wasted as agents continue projects in the low-

demand state longer than they would have if they acted only on their own signals. Thus , it 

is important to determine whether social learning actually affects investment decisions in 
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the semiconductor industry. If so, suspensions by other firms will increase the probability 

that a given firm will suspend its own project. If not, other suspensions will not be 

significant. The empirical methods used to test the hypothesis that arises from the model 

are explained in section 5.  

4. Data Description 

I use semiconductor plant-level data from a commercial database called World Fab 

Watch (WFW), produced by Strategic Marketing Associates, a research firm in the 

semiconductor industry based in Santa Cruz, California. WFW contains data on 

investments by semiconductor firms in semiconductor fabrication plants, called “fabs.” 

The investment projects consist of either the construction of new plants or major 

upgrades to existing facilities. The data are collected on a monthly basis through site 

visits, telephone interviews, and e-mail enquiries. Strategic Marketing Associates 

estimate that the database covers more than 95 per cent of the commercial semiconductor 

fabrication plants in the world. The database includes detailed data on each plant, 

including the company, location, country of ownership, beginning and ending dates for 

construction or upgrade of the plant, production technology, products to be produced, and 

the total expected cost of the project, broken down into construction costs and equipment 

costs.  

 

I select a sample from the WFW database by first removing plants owned by 

governments, universities, or other not-for-profit organizations. Second, I remove plants 

where the firm has announced that it intends to build or upgrade a fabrication plant, but 

construction has not yet begun. I omit these projects because no initiation cost can 

actually be incurred, so the suspension would not release as much information as the 

suspension of a project that had been underway.  

 

In some cases , where dates or costs of the project were missing, I obtain the missing data 

from the industry and business news in the Lexis Nexis news database, or from Internet 

versions of semiconductor industry newspapers, including Semiconductor News , 
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Electronic Buyers News , and Silicon Strategies. In two cases, Internet versions of local 

newspapers in New England and Colorado provide information about a plant. For 23 

investment projects , I obtain some data from news sources.  

 

The period studied consists of 30 quarters from 1 January 1995 to 30 June 2002. This 

period was chosen because, prior to that, original production dates were not identified in 

the WFW database. Although the dates consist of at least the month and year in which the 

activity occurred, I group the data into quarters, since some of the date variables (date of 

work commencement, production date, date of the delay announcement) come from news 

articles only, rather than from WFW itself. The dates of the  news articles may be less 

precise than the dates contained in the original WFW database, so I attempt to identify 

only the quarter and year in which the activity for the project occurred. These selection 

criteria leave 258 plants for which the construction or upgrade investment project was 

begun during the 30-quarter period studied.  

 

I identify suspended or cancelled projects where the WFW database contains a date for 

the delay announcement and/or comments that note a delay in the project. I also identify 

some suspensions by comparing the original production date with the actual production 

date. If there are differences in these dates of six months or more, I search news sources 

to determine whether a suspension has been reported for that plant. Through 

correspondence with the authors of the WFW database, I also identify three cancelled 

projects and obtain clarifications on some of the other suspension details. Of the 258 

semiconductor plant investment projects in the sample, 36 are suspensions and three are 

cancellations. Throughout this paper, the 39 suspensions and cancellations are grouped 

together and referred to as suspensions. Figure 1 summarizes the semiconductor fab 

project initiations and suspensions , by quarter, for the sample plants.  

 

The sample data shown in Figure 1 show a quite lumpy pattern of initiations and 

suspensions of semiconductor plant investments. Suspensions are clustered into two 

periods: 1996Q2 to 1998Q4 and 2000Q4 to 2002Q1. During these two periods, initiations 
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fall off as suspensions rise, leading to large spikes in the ratio of suspensions to 

initiations. Aggregate industry semiconductor sales are shown in Figure 2 over the study 

period. The aggregate data are based on monthly data on worldwide billings of 

semiconductor shipments published by the U.S. Semiconductor Industry Association. 6  

Over the period 1995Q1 to 2002Q2, there were fairly large fluctuations in shipments, 

especially in North America. These fluctuations roughly correspond to the pattern of 

project initiations in the sample of plants shown in Figure 1. Figures 1 and 2 indicate that 

the industry features a “boom and bust” pattern of sales and investment. As such, a social 

learning model may be appropriate to explain the investment behaviour in this industry.  

 

Table 1 provides summary statistics for the variables used as regressors in the estimation 

model described above. The initiation cost is measured by the construction costs as a per 

cent of the total cost. The initiation cost averages 17.5 per cent of the total cost of the 

respective projects. The total cost averages $593 million (in 1996 U.S. dollars) across the 

sample of investment projects. To capture social learning effects, I calculate the 

percentage of other plants’ investment projects that are suspended at the end of a given 

plant’s own project (either through completion or suspension). For the average plant in 

the sample, 3.1 per cent of other projects were suspended in the quarter when the plant’s 

own project ended. Aggregate industry sales growth is calculated as of the end of the 

project. Aggregate sales fell by 4.4 per cent between the previous year and the end of the 

average project. Aggregate sales growth from the previous quarter to the end of the 

project averaged –0.4 per cent.  

 

Table 2 compares suspended and continued projects by region. Most of the investment 

activity over the whole period occurred in North America and Asia , excluding Japan 

(referred to herein as Asia Pacific). Of the 39 suspended projects, 12 were located in 

North America and 16 in Asia Pacific. Japan and Europe had five and six suspended 

                                                 

6. All sample data on costs and aggregate sales were originally in nominal U.S. dollars. Dollar 
values are converted to 1996 U.S. dollars using the U.S. GDP implicit price deflator, 
published in Table 7.1 on the Internet Web site for the Bureau of Economic Analysis 
(http://www.bea.doc.gov/), 31 October 2003.   
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projects, respectively. Suspended projects made up 15 per cent of all projects and 30 per 

cent of the total expected cost. Japan had the lowest percentage of projects suspended, 

and the rest of Asia  Pacific had the highest percentage. Suspended projects are, on 

average, nearly twice as expensive as continued projects. The ratio of  the total cost of 

suspended to continued projects ranged from a low of 0.15 in Japan to 0.58 for North 

America. 

5. Empirical Methodology 

The semiconductor dataset provides a good opportunity to test the CL94 model, because 

it allows one to observe firms that do suspend their projects and those that do not suspend 

them; the non-suspenders can act as a control group and mitigate problems of selection 

bias. The main test investigates whether the probability that a given firm will suspend its 

project depends on the proportion of other firms that suspended in the previous period.  

 

I model individual behaviour as a binary choice, to suspend or not to suspend, using the 

probit model shown in equation (1). Note that the semiconductor data I use are plant level 

and the results repor ted in section 6 treat each plant as an individual decision-making 

agent. Grouping the observations by firm, however, does not change the results in any 

substantive ways.7  

 

The regression model is : 

 )'''()1Pr( irsrsirsiirs ZYXcY εδβα ++++Φ== − ,   (1) 

 

where Pr (Yir s = 1) is the probability of suspension by plant i in region r at time s, where s 

is the end of the project because of either suspension or completion. The suspension 

                                                 

7. The robustness of the results is checked by controlling for potential unobserved common 
characteristics at the firm level by using clustered standard errors in the regressions. In 
additional regressions, I use a random-effects panel estimator, which treats plants owned by 
the same firm as part of the same panel. These alternative regressions do not yield any 
substantial differences from the results reported in Tables 3 through 5.  
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dummy variable Yirs = 1 if the plant chooses to suspend its project, and Yirs = 0 if the plant 

completes its project. F is the cumulative standard normal probability distribution 

function. The first two terms on the right-hand side are the constant term, followed by Xi, 

a vector of individual plant characteristics. Xi consists of the exogenous variables in the 

CL94 model: initiation cost, private signal quality, reactivation cost, and a technology 

variable, since the projects are not all identical. Initiation cost is measured as the expected 

construction cost component of the semiconductor project as a percentage of expected 

total cost. Private signal quality is operationalized by the total expected cost of the 

project; this assumes that there may be a fixed cost to acquiring good information, and 

plants that can undertake more expensive projects are assumed to be able to gather better-

quality information. In all cases, data for the expected cost are taken from announcements 

made at the beginning of the project. Differences in technology are proxied by the size of 

the semiconductor wafers to be manufactured at the plant. Larger wafer sizes are usually 

associated with newer technology.  

 

The social learning effect is captured through the variable Y-irs, which is the percentage of 

other active plants in region r that have been suspended in period s, where s is the quarter 

when plant i’s project ended, either through completion or suspension. Active projects are 

defined as those that have been initiated and were under construction in period s. In the 

CL94 model, other suspensions in the previous period would influence the current 

period’s suspensions; however, with quarterly data it seems more likely that a firm reacts 

to the behaviour of others in the same period. To check the validity of this  intuition, I test 

the sensitivity of the results to the timing of the social learning variable by using 

suspensions of projects by others in the previous quarter only, and in the previous and 

current quarter.8 There are no substantial differences in the results.  

 

Zrs is a vector of contextual regressors for region r in period s intended to capture the 

effect of common shocks and the influence of a common environment. In particular, Zrs 

includes the percentage change in regional semiconductor sales from the previous quarter 
                                                 

8. In separate regressions, not shown. 
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or year, and a full set of year dummies interacted with a region. This is an attempt to 

control for regional factors, such as the Asian crisis , that may have affected the ability of 

some plants to acquire financing to complete their project.  

5.1 Tests of the hypotheses 

The key hypothesis test is that, if social learning is present, the coefficient on Y-irs , ß, is 

positive, and if social learning does not affect the individual plant’s suspension decision, 

then ß equals zero. The CL94 model also generates testable hypotheses in the form of 

sign predictions for the Xi variables. CL94 work out the comparative static effects of 

changes in the exogenous variables on the lower and upper limit of the first suspension 

times (see equations (A2) and (A3) in the appendix). To facilitate empirical tests using a 

probit model, I interpret the comparative statics of CL94 in terms of whether a change in 

the exogenous variable increases or decreases the probability that an individual project 

will be suspended.  

 

CL94 show that increases in the initiation cost, κ, reduce the set of equilibria that involve 

suspensions and thus reduce the probability that a given firm will suspend its project. I 

therefore expect the a coefficients on the initiation cost to have negative coefficients. An 

increase in initiation costs increases expected costs and raises the price of the good in the 

high-demand state. It then takes more bad news to convince the firm to suspend its 

project, which pushes back the first suspensions and reduces the number of suspensions 

that are likely to be observed. 

 

Increases in the quality of the firm’s private signals (p) are summarized as follows by 

CL94 (p. 559): “the more convincing is each individual signal, the fewer signals a firm 

needs to justify suspension.” Better-quality private information decreases both the lower 

and upper bounds on equilibrium suspension times, which implies that suspensions occur 

sooner in the project, reducing the delay caused by social learning and making it more 

likely that one will observe suspensions in the low-demand state. Higher-quality private 

signals should also result in less reliance on social learning. Therefore, suspensions of  
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projects by other firms are expected to have less influence on firms that have good 

private information. 9  

 

CL94 also consider some extensions to their model that are relevant to this study. In the 

basic model, all uncertainty is resolved by the first suspensions, but CL94 demonstrate 

that social learning will also occur in a more realistic setting, where uncertainty is not 

resolved until the project is completed. When the first firms suspend, others observe their 

actions and update their beliefs, causing some to suspend and others to continue. The 

firms that continue again gather private information until the suspension, and the market 

again aggregates the information and updates beliefs. Agents still learn from observing 

others and their own private information, but the social learning occurs in several stages, 

and suspensions are clustered in several distinct periods, rather than in the single cluster 

of the basic model. This extension does not imply any differences for hypothesis testing.  

 

The basic model assumes a continuum of competitive firms , but CL94 also discuss the 

implications of a market that has a few firms acting strategically. One result is that firms 

will want to continue even when their signals are bad, to gain a larger share of the 

market. CL94 argue that this kind of “war-of-attrition” game further delays the first 

suspensions, and reduces the probability of suspensions in their model. However, other 

models that consider wars of attrition in more detail emphasize not only the delays but 

also that payoffs of firms will be strategic substitutes, such that a given firm’s expected 

profits will increase when other firms suspend their investment project. This may imply a 

negative and significant relationship between suspensions made by other firms and a 

firm’s own probability of suspension.10 A second implication of an imperfectly 

competitive market structure is that the continuation of investment projects by other firms  

                                                 

9. The model also predicts that an increase in the cost of reactivation, µ, decreases the set of 
equilibrium suspension times and reduces the probability of observing a suspension for a 
given firm. The database does not include a variable on reactivation costs, so this prediction 
is not tested. 

10. See Chamley (2004, 288). 



 16

 

conveys a positive signa l, encouraging others to enter the market, or to continue  in it. 

This hypothesis is left for future work.  

5.2 Identification 

Manski (1993, 2000) points out that an important problem in identifying the parameters 

of social effects arises when social learning models are being estimated: reference group 

determinants and individual determinants of an individual agent’s behaviour are likely to 

be correlated. The actions of individual agents in a reference group are related to the 

group’s mean, but not always because of social learning. Manski (1993, 532) offers three 

reasons for the correlation of individual and group behaviour:  

 

“(a) endogenous effects, wherein the propensity of an individual to behave in 

some way varies with the behaviour of the group; (b) exogenous (contextual) 

effects, wherein the propensity of an individual to behave in some way varies with 

the exogenous characteristics of the group, and (c) correlated effects, wherein 

individuals in the same group tend to behave similarly because they have similar 

individual characteristics or face similar institutional environments.”  

 

Brock and Durlauf (2001) analyze the identification problem in social interaction models. 

They show (p. 3322) that identification of the endogenous social effects can be achieved 

in a binary-choice model if the individual and contextual regressors are not linearly 

dependent, and if the average group choice is a non-linear function of the contextual 

effects. I use these criteria to verify whether the model in equation (1) is identified.  

 

Defining appropriate reference groups is often difficult in studies of social learning: it 

requires knowledge of information flows between agents. Since semiconductor plants are 

often located in different countries or even different continents than their headquarters, it 

is not obvious what the appropriate reference group should be. Initially, I treat the whole 

industry as operating in one reference group; i.e. , all fabrication plants in the industry. 
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This seems plausible, given the global nature of the industry, and the fact that firms can 

easily learn about other fabs investment behaviour by purchasing the database I use. I 

also consider social effects that arise between firms located in the same broad region; 

hence, for some regressions, plants are grouped with other plants to form four regional 

reference groups: Europe, North America, Japan, and Asia Pacific. The relatively small 

number of observations in the database does not allow smaller groupings.  

 

To satisfy the first part of the identification conditions described by Brock and Durlauf 

(2001), individual plant characteristics, Xi, cannot be linearly dependent on the contextual 

regressors, Zrs. Recall that Xi includes: initiation costs, measured as expected construction 

costs as a percentage of expected total costs; expected total cost as a proxy for signal 

quality; and wafer size. All of the Xi variables are determined at the beginning of the 

project. The Zrs variables consist of year-region dummies and aggregate semiconductor 

sales growth; i.e., quarterly or annual percentage change in regional sales measured at the 

end of the project. Given the differences in timing, it is unlikely that there is a linear 

relationship between the Xi and Zrs variables.  

 

It is possible, however, that a linear relationship exists between the average group 

behaviour, Y-irs, and the contextual effects, Zrs, since both are measured at time s and are 

expected to be correlated. Intuitively, changes in the overall demand conditions could 

cause plants to suspend at the same time, not because of social learning, but because they 

face the same environment, leading to non-identification due to correlated effects, 

described by Manski (1993, 2000) . However, if the other suspensions variable, Y-irs, is a 

non-linear function of the contextual effects, Zrs, the model should be identified based on 

Brock and Durlauf’s criteria. I use a RESET (omitted variable) test for non-linearity 

between these variables, as recommended by Davidson and MacKinnon (1993, 195).  

 

When the whole database is treated as one group, the RESET test regresses the 

percentage of other projects suspended during the quarter when the plant’s own project 

ended (Y-is) on year dummies and aggregate sales growth (either annual or quarterly). The 
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p-values for these tests, first using annual sales growth and then using quarterly sales 

growth, are 0.000 and 0.002, respectively. With regions as reference groups, the 

percentage of other suspensions in the region is regressed on the year -region dummies 

and regional sales growth. The p-values for the RESET tests that have regional variables 

are 0.001 and 0.003. Both sets of test results show that one cannot reject the hypothesis 

that higher-order effects are significantly different from zero, which implies that a non-

linear rather than a linear relationship exists between the average group behaviour and 

the contextual regressors. These results suggest that the model in equation (1) should be 

sufficient to identify the social learning effects via the coefficient estimate for other 

suspensions, Y-irs. 

6. Results 

6.1 Estimates of social learning in suspension decisions at 
semiconductor plants 
 

Table 3 reports the results of estimating the basic model in equation (1) using probit 

regressions. The specifications in columns 1 and 2 assume that all plants belong to the 

same reference group, and therefore may be influenced by suspensions anywhere else in 

the world. In columns 3 and 4, plants are divided into four reference groups , based on 

their geographic region. These models assume that only other firms in the plant’s own 

region could generate social learning. The final two columns include an additional 

regressor : a dummy variable for large plants interacted with the social learning term, 

which tests whether those plants rely less on social learning, assuming they have better-

quality information, as hypothesized in the CL94 model. Large plants are those that have 

a total cost greater than the median plant in the sample. 

  

The variables that measure the characteristics (Xi) of the plant’s own investment project 

all have the expected signs, and are significant at the 1 per cent level in all but two cases. 

Projects that have a higher initiation cost as a share of the total cost have a lower 

probability of suspension, consistent with the comparative statics prediction. Higher -cost 
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projects are more likely to be suspended. To the extent that total cost is a proxy for the 

quality of the plant’s private information, this finding suggests that better-informed plants 

are more likely to suspend their projects. The finding is also consistent with the 

predictions of the CL94 model.11 A plant that has good information is less likely to delay 

its decision to suspend (either to observe others or to gather more private information), 

and therefore a suspension is more likely to occur in that type of plant. Wafer size 

controls for the type of technology the plant will use. Larger wafer-size technology is 

usually more complex, and my findings indicate that it is associated with a greater 

probability of suspension. I explore this finding in more depth in the regressions shown in 

Table 5. 

 

The key hypotheses involve the coefficient on the behaviour of other plants (Y-irs), 

measured as the percentage of active projects suspended at those plants in relation to a 

given plant’s own suspension behaviour. The main finding from Table 3 is that none of 

the social learning variables, OTHER SUSPENSIONS, OTHER REGIONAL 

SUSPENSIONS, or LARGE X OTHER SUSP., ha s the expected positive sign, and six of 

eight coefficients are not significant at the 5 per cent level. To verify the timing of the 

social learning variable, I have included one-quarter lags of OTHER SUSPENSIONS t-1, 

individually and in combination with the same quarter observation in additional 

regressions, not shown in Table 3. The results are qualitatively the same, regardless of 

whether the current quarter, one lag, or both observations on the other suspension 

variables are included. The findings from the basic model regressions suggest that social 

learning is not a significant factor in a plant’s decision to suspend its investment project. I 

test the robustness of this result by weighting the other suspensions by project cost, and 

by duration (Table 4). The results reinforce the findings of the basic model.  

                                                 

11. It may be possible that higher-cost projects are more poorly managed or face more severe 
financing constraints, and this could explain why they are more likely to be suspended. 
These hypotheses cannot be ruled out by this analysis, since I do not have data to control 
for them. Even if total cost is proxying for something other than signal quality, however, 
this should not affect this paper’s examination of whether social learning plays a significant 
role  in the suspension of projects. Therefore, the main findings of this paper should not be 
affected by these hypotheses. 
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The regional social learning effects, shown in Table 3, are negative and significant, which 

is somewhat puzzling. They signify that other suspensions in the same region reduce the 

probability that a given firm will suspend its project.  CL94 suggest that, if firms behave 

strategically, a “war-of-attrition” scenario may occur: firms will continue even when their 

signals are bad, hoping others will suspend, making the market more profitable for the 

remaining firms. This possibility can be explored in future research. 

 

A secondary hypothesis from the CL94 model is that firms with better-quality private 

information rely less on social learning than other firms. Columns 5 and 6 of Table 3 test 

this idea by interacting the social learning variable with a dummy variable to identify the 

plant’s own project as large (greater than the median total cost) or not. If the large plants 

rely less on social learning, the coefficient on LARGE X OTHER SUSP. will be 

significantly smaller than the coefficient on OTHER SUSPENSIONS. However, a 

statistical test that shows that the two coefficients are equal cannot be rejected, which 

implies that there is no significant difference between large and small plants with respect 

to social learning.12  In particular, other suspensions do not significantly influence a 

plant’s own suspension behaviour.   

 

The models in Table 3 assume that plants put equal weight on all other suspensions. Of 

course, it is also possible that the behaviour of some plants is more influential than that of 

others. Weighting the other suspensions in some way may reveal social learning effects 

not present in the basic regression models. I weight the other suspensions in two different 

ways: by total cost and by duration.  

 

Table 4 shows the results of the regressions when the other suspensions are weighted by 

cost or duration. In all four regressions, the Xi variables are all significant and have the 

same signs as before. In columns 1 and 2, OTHER SUSPENSIONS shows simply the 

                                                 

12. The p-values for the test that the estimated coefficients on OTHER SUSPENSIONS and 
LARGE x OTHER SUSP. are equal to are 0.3619 for column 5 and 0.3805 for column 6.  
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dollar value of other suspended projects based on total cost. Column 2 shows only other 

suspensions that have a total cost greater than the median value, to capture possible non-

linear effects, so that only the largest other suspensions influence plant i’s decision. 

Column 3 also uses other suspensions weighted by total cost, but the OTHER 

SUSPENSIONS variable is calculated as the dollar value of other suspensions as a 

percentage of the value of all projects active at that time. In all three columns, the social 

learning variables have a negative sign and are not significant even at the 10 per cent 

level. Column 4 uses the duration of the suspended projects to weight their possible 

influence. CL94 (p. 562) argue that “the probability other firms have received good 

signals will grow, the longer they remain in the market.” Projects that have been under 

construction for many periods have probably received several good signals and have had 

more time to incur costs. Therefore, the suspension of a relatively long-lived project 

should release more information to the market than the suspension of a shorter-duration 

project. Weighting the other suspensions by their duration, however, still does not change 

the finding that social learning does not appear to significantly influence the suspension 

behaviour of semiconductor plants.  

6.2 Estimates of social learning in the adoption of 12-inch wafer 
technology  

 
Social learning models attempt to explain an agent’s decision-making in the face of 

uncertainty. A potentially important source of uncertainty in the semiconductor industry 

is the technical or economic feasibility of new technologies. The sample period includes 

the earliest adoption of a new generation of semiconductor production technology, 12-

inch wafers, in mass-production fabrication facilities. The switch from the previous 

standard of 8-inch wafers was a significant technological change that required large 

investments in facilities. The average expected total cost of a 12-inch wafer plant in the 

sample is $1.3 billion, in 1996 U.S. dollars. A small-scale 12-inch wafer plant, built for 

research and development purposes, was completed in 1997, and the first commercial 

production plant was completed in 1999. Of the 28 plants that were to use the 12-inch 

wafer technology, nearly half, 12, were suspended.  
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The experience of the semiconductor industry in adopting a significant new technology 

provides another opportunity to test the social learning hypotheses. Firms may rely on 

social learning to form beliefs not only about demand conditions, but also about the 

optimal time to adopt a new technology. This is not just a technological or research and 

development spillover. It is not necessary to transfer between semiconductor firms any 

technical knowledge about how to manufacture 12-inch wafers. Instead, social learning 

theories imply  that there is an information spillover whereby a firm learns about the 

potential profitability of investing in the new technology simply by observing whether 

other firms continue their investment project. 

   

Table 5 shows the results of regressions testing for social learning by firms that adopted 

this new technology. To do so, a dummy variable that identifies 12-inch wafers is added 

to the regression and also interacted with the other suspensions variable. The first two 

columns assume a single, world region as the reference group and the key variable is 

OTHER SUSP. X 12 INCH WAFERS DUMMY. Columns 3 and 4 include regions as 

reference groups and the key variable is OTHER REGIONAL SUSP. X 12 INCH 

WAFERS DUMMY. The 12-inch wafers dummy variable , on its own, is not significantly 

different from zero, which indicates that the intercept term does not differ between 12-

inch fabs and other plants. I therefore focus on the two interactions terms. 

 

The main result is that the coefficient on the interaction variables for other suspensions 

interacted with the 12-inch dummy variable is positive and significant at the 5 per cent 

level in all four regressions. Thus, firms that attempted to adopt the 12-inch wafer 

technology were significantly more likely to suspend their new plant if any other projects 

had been suspended. Interestingly, the other plants—those using the conventional, 

smaller wafers—were much less likely to suspend their plant if there was another 

suspension, as shown by the significant but negative coefficients on the OTHER 

SUSPENSIONS and OTHER REGIONAL SUSP. variables. 
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First, consider the 12-inch wafer plants. Suspensions by other plants elsewhere in the 

world, or in the plant’s own region, significantly increase the probability that these new 

wafer plants would be suspended. The other suspensions are not only plants that use 12-

inch wafers; they may use any wafer size. When I treat the world as one region, the 

OTHER SUSP. X 12 INCH WAFERS DUMMY has a coefficient of 0.29 in columns 1 and 

2. Converting this probit index to a standard change in probability using the mean values 

of the regression variables, the 0.29 coefficient implies that a 1 per cent increase in the 

number of other plant suspensions (anywhere in the world) increases the probability of 

suspension for a given plant by 3.6 per cent. If I consider only other suspensions in the 

same region, the probit regression coefficients are 0.16 to 0.17, shown in columns 3 and 

4. Transforming these coefficients into probabilities evaluated at the mean, I find that a 

1 per cent increase in the number of other suspensions in the region increases the 

probability of suspension of an average plant by 1.6 to 1.7 per cent. Therefore, the 

economic significance of these findings is not large, but they do suggest that social 

learning may be more important for agents who face greater uncertainty. Another 

possible explanation is that, when a firm decides to adopt an unknown new technology, 

the quality of its private information is effectively lower than when it decides to suspend 

a project that uses a known technology. 

 

Another interesting result from the technology choice regressions is that the firms using 

conventional technology behave differently from those that are adopting the new 

technology. Specifically, the negative and significant coefficients on the OTHER 

SUSPENSIONS and OTHER REGIONAL SUSP. variables show that the firms using the 

old technology are less likely to suspend their project when others suspend. Converting 

the coefficients on OTHER SUSPENSIONS to probabilities evaluated at the mean, I find 

that a 1 per cent increase in the number of suspensions by other firms reduces the 

probability of suspension for the average firm by 1.4 per cent. For the OTHER 

REGIONAL SUSP. variable, the coefficients in columns 3 and 4 imply that a 1 per cent 

increase in other suspensions in the same region reduces the probability that the average 

firm will suspend their project by 1.1 to 1.2 per cent.  
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One explanation for the negative relationship between suspensions by others and 

suspension by a given conventional technology plant is that the given plant bases its 

decision more on a war-of-attrition game than on learning from others. Since it knows 

what to expect with respect to output and costs with the existing technology, its 

suspension decision may be to continue when rivals suspend because that decision will 

allow it to capture a larger share of the market.  By contrast, when a firm is adopting a 

new technology, it faces more uncertainty concerning costs, output, produc tivity, and 

ultimately profits that will be generated by the new plant. Its decision to suspend is 

therefore more sensitive to worries that demand is weakening: it is more likely to suspend 

if a rival firm stops building a new plant. 

 6.3 Robustness to alternative specification of sales shocks  

The preceding analysis assumes that aggregate demand shocks can be approximated by 

sales-growth variables measured using the percentage change in the aggregate worldwide 

(or regional) shipments value from the previous year or quarter. Since many of the 

changes in sales may be forecastable by semiconductor plants, their decision to suspend 

or continue their investment project may depend more on unexpected shocks to sales. An 

alternative method that reflects this possibility is to forecast aggregate sales and use the 

residuals from the forecast regression to represent aggregate sales shocks. The forecast 

regression uses ordinary least squares (OLS) to estimate the AR(4) model shown in 

equation (2). Since the data are qua rterly, four lags of aggregate sales enter the forecast 

equation13:  

 

 1 2 3 4t t t t tSALES SALES SALES SALES SALES υ− − − −= + + + + .  (2) 

 

The regression residuals from equation (2) are used in the probit regressions as a Zt 

regressor, called AGGREGATE SALES SHOCK, in place of the aggregate sales-growth 

                                                 

13. I also use a forecast model with eight lags of aggregate sales data, which do not result in 
any substantial changes in the findings.  
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variables. Table 6 reports the results of the probit regressions of the basic model and the 

model of the 12-inch wafer technology choice using the aggregate sales-shock variable.  

The basic model is shown in column 1 and the model of the technology choice is shown 

in column 2. The results using the sales-shock variable are not qualitatively different 

from those reported above. The basic model does not have a significant social learning 

effect, whereas the firms adopting the 12-inch wafer technology are positively and 

significantly affected by the suspensions of other projects.  

7. Conclusions 

The results of my research indicate that a semiconductor plant’s decision to continue or 

suspend an investment project is significantly influenced by the suspension decisions 

made by similar plants in the industry, but that social interactions differ between plants 

investing in new technology as opposed to conventional technology. When investing in a 

major new technology, social learning as described in CL94 does seem to occur. Plants 

adopting a new generation of wafer technology are significantly more likely to suspend 

their project if other suspensions occur in the same period, which suggests that plants 

delay their own suspensions to learn from others about demand conditions or the cost of 

using the new technology, or both. This may explain the clustering of suspension and 

investment activity that occurs in this industry.  

 

Plants adopting conventional technologies are not positively influenced by the behaviour 

of others; conversely, suspensions by others significantly reduce the probability that these 

plants will suspend their investment projects. These plants may expect to gain a larger 

share of the market by continuing to invest, in the hope that rivals will drop out. This 

suggests that plants investing in standard technology engage in a war-of-attrition game, in 

which suspensions by others increase the firm’s expectations about the payoff from its 

own investment. The effect of the behaviour of others, however, is smaller for the 

conventional technology plants than for those adopting the new technology. These 

findings may indicate that social learning is associated with conditions where uncertainty 
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is unusually high, as with the adoption of a new technology, or when an agent’s own 

private information is not very good. 

 

Social learning theories imply that both wars of attrition and clustering behaviour can 

cause inefficient delays, so social welfare is lower than if agents acted independently, 

rather than waiting for others to suspend their investment. Resources may be wasted as 

plants continue investment projects longer than is socially optimal in the low-demand 

state. My findings imply that social learning may explain how large overcapacities can be 

built up in the semiconductor industry, and, if a large share of the firms are investing in 

new technology, there is more likely to be an abrupt collapse in aggregate investment. 

 

The results of my research are consistent with earlier work on technology adoption that 

find significant social learning effects in databases that feature relatively simple, non-

capital-intensive technologies in agriculture. This paper has approached the question of 

social learning from the opposite direction, by considering when an investment project is 

suspended, thereby allowing me to compare plants that suspend their investment with a 

control group of plants that do not. Using data from a highly cyclical, capital-intensive 

industry with complex technologies, I have also found evidence that social learning 

influences decisions on technology adoption as well as strategic decisions. Further work 

is required to establish more generally the conditions under which agents rely on private 

information versus social learning. 
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Table 1: Semiconductor Plant Investment Projects , Summary Statistics 
(total costs in 1996 U.S. dollars, millions ) 

 

 Mean Median Std. dev. Obs. 

Initiation cost as % of total cost 17.5 20.0 10.6 255 

Total cost 593.7 413.9 596.7 258 

Wafer size (inches) 7.5 8.0 2.1 257 

Other suspensions as % of other active 
projects  

3.1 1.5 3.2 258 

Aggregate sales growth (% yr/yr) -4.4 -2.7 21.7 258 

Aggregate sales growth (% qtr/qtr) -0.4 0.1 9.4 258 

 

Table 2:  Suspended and Continued Projects, By Region 
(total costs in 1996 U.S. dollars, millions ) 

 

 Asia 
Pacific 

Europe Japan  North 
America 

World 

Suspended projects:      

Number 16 6 5 12 39 

Avg. total cost (TC) 1,364 1,421 641 1,098 1,198 

Sum of total costs (Σ TC) 21,829 8,529 3,205 13,178 46,741 

Continued projects:      

Number 61 46 49 63 219 

Avg. total cost (TC) 746 340 464 358 486 

Sum of total costs (Σ TC) 45,461 15,654 22,747 22,565 106,428 

Σ TC (Suspended)  

  /  Σ TC (Continued) 

0.48 0.54 0.14 0.58 0.44 
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Table 3:  Probit Regressions for Basic Models 
(dependent variable is suspension = (1,0)) 

 

 1 2 3 4 5 6 

INITIATION COST (%) -0.0577 -0.0587 -0.0615 -0.0641 -0.0692 -0.0703 
 -(3.70) -(3.59) -(3.65) -(3.50) -(3.74) (0.00) 
       
TOTAL COST ($) 0.0012 0.0012 0.0008 0.0008 0.0019 0.0019 
 (4.09) (4.01) (2.69) (2.59) (4.63) (0.00) 
       
WAFER SIZE 0.1981 0.1900 0.3428 0.3357 0.2532 0.2615 
 (2.39) (2.26) (3.32) (3.37) (1.08) (0.28) 
       
OTHER SUSPENSIONS (%) -0.0268 -0.0376   -0.0113 -0.0165 
 -(0.54) -(0.79)   -(0.14) (0.84) 
       
OTHER REGIONAL SUSP. (%)  -0.0732 -0.0876   
   -(2.26) -(2.86)   
       
LARGE X OTHER SUSP. (%)     -0.1453 -0.1443 
     -(1.76) 0.0750 
       
AGG. SALES GROWTH (%) 0.0006    -0.0109  
(annual) (0.05)    -(0.60)  
       
AGG. SALES GROWTH (%) -0.0175    -0.0004 
(quarterly )  -(0.86)    (0.98) 
       
REGIONAL SALES GROWTH (%)  0.0043    
(annual)   (0.28)    
       
REGIONAL SALES GROWTH (%)   -0.0276   
(quarterly )    -(1.16)   
       
N 227 227 180 180 200 200 
Wald chi2 37.96 41.28 75.95* 77.61* 59.95 59.72 
Pr > chi2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Pseudo R2 0.3638 0.3673 0.4216 0.4308 0.3946 0.3914 

Notes: Coefficients are shown with t-statistics in parentheses. All regressions include a constant and year 
dummies interacted with region dummies. Year or quarter refers to the period when the project was 
completed or suspended. Dollar values are in 1996 U.S. dollars, converted from nominal dollars using the 
U.S. GDP deflator. All regressions use robust standard errors. Columns 5 and 6 exclude plants with 12-inch 
wafer technology. In columns 5 and 6, the large dummy equals one if the plant’s own project has expected 
total costs greater than the median project in the whole sample. *Wald statistics could not be calculated in 
the regional model with robust standard errors, probably because there are too few observations. The value 
reported is the chi-square statistic for the regression estimated without robust standard errors.  
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Table 4:  Probit Regressions with Weighted Other Suspensions  
(dependent variable is suspension = (1,0)) 

 

   1 2 3 4 

INITIATION COST (%)   -0.0592 -0.0594 -0.0590 -0.0595 
  -(3.63) -(3.65) -(3.61) -(3.68) 
      
TOTAL COST  0.0012 0.0012 0.0012 0.0012 
  (3.93) (3.93) (3.95) (4.07) 
      
WAFER SIZE  0.1906 0.1905 0.1920 0.1918 
  (2.24) (2.24) (2.26) (2.27) 
      
OTHER SUSPENSIONS (Wgt $)  -0.0001    
  -(1.01)    
      
OTHER SUSPENSIONS (%)    -0.0193  
($ value as % of other active)    -(0.86)  
      
OTHER LARGE SUSP. ($)   -0.0001   
   -(1.12)   
      
DURATION OTHER SUSP.     -0.0267 
(quarters)     -(1.40) 
      
AGG. SALES GROWTH (%)  -0.0240 -0.0255 -0.0193 -0.0235 
(quarterly )  -(1.08) -(1.13) -(0.90) -(1.10) 
      
N   227 227 227 227 
Wald chi2  39.78 39.92 39.91 44.15 
Pr > chi2  0.0000 0.0000 0.0000 0.0000 
Pseudo R2   0.3696 0.3707 0.3684 0.3731 

Notes: Coefficients are shown with z-statistics in parentheses. All regressions include a constant and year 
dummies. Year or quarter refers to the period when the project was completed or suspended. Dollar values 
are in 1996 U.S. dollars, converted from nominal dollars using the U.S. GDP deflator. All regressions use 
robust standard errors. The other plants’ suspensions are weighted by the expected costs of the project. The 
model in column  2 includes only other suspended projects that are large, defined as having expected total 
costs greater than the median project in the whole sample.  
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Table 5:  Probit Regressions with Technology Choice Dummy 
(dependent variable is suspension = (1,0)) 

   1 2 3 4 

INITIATION COST (%)   -0.0572 -0.0588 -0.0551 -0.0581 
  -(3.72) -(3.61) -(3.21) -(3.07) 
      
TOTAL COST  0.0014 0.0013 0.0013 0.0013 
  (4.72) (4.64) (4.91) (4.70) 
      
12 INCH WAFERS DUMMY  -0.3888 -0.4087 0.1057 0.1653 
  -(0.64) -(0.72) (0.15) (0.25) 
      
OTHER SUSPENSIONS (%)  -0.1000 -0.1121   
  -(1.74) -(2.01)   
      
OTHER SUSP. X 12 INCH WAFERS DUMMY 0.2913 0.2921   
  (2.79) (2.95)   
      
OTHER REGIONAL SUSP. (%)    -0.1000 -0.1155 
    -(2.98) -(3.34) 
      
OTHER REGIONAL SUSP. X 12 INCH DUMMY  0.1636 0.1574 
    (2.06) (2.08) 
      
AGG. SALES GROWTH (%)  -0.0017    
(annual)  -(0.13)    
      
AGG. SALES GROWTH (%)   -0.0187   
(quarterly )   -(0.96)   
      
REGIONAL SALES GROWTH (%)    0.0058  
(annual)    (0.41)  
      
REGIONAL SALES GROWTH (%)     -0.0286 
(quarterly )     -(1.18) 
      
N   227 227 180 180 
Wald chi2  37.36 38.28 76.27* 77.93* 
Pr > chi2  0.0001 0.0001 0.0000 0.0000 
Pseudo R2   0.3928 0.3967 0.4234 0.4326 
Notes: See notes to Table 3. *Wald statistics could not be calculated in the regional model with robust standard 
errors, probably because there are too few observations. The value reported is the chi-square statistic for the 
regression estimated without robust standard errors. 
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Table 6:  Probit Regressions Using Alternative Sales-Shock Variable, 
Basic Model and Technology Choice Model  
(dependent variable is suspension = (1,0)) 

    1  2 

INITIATION COST (%)    -0.0601  -0.0602 
   -(3.59)  -(3.62) 
      
TOTAL COST   0.0011  0.0013 
   (3.96)  (4.66) 
      
WAFER SIZE   0.1889   
   (2.33)   
      
12 INCH WAFERS DUMMY     -0.3738 
     (0.65) 
      
OTHER SUSPENSIONS (%)   -0.0623  -0.1234 
   -(1.29)  -(2.41) 
      
OTHER SUSP. X 12 INCH WAFERS DUMMY    0.2828 
     (2.82) 
      
AGGREGATE SALES SHOCK   -0.1202  -0.0982 
(residual from AR(4) forecast)   -(1.43)  (1.20) 
      
      
N    227  227 
Wald chi2   42.54  42.44 
Pr > chi2   0.0000  0.0000 
Pseudo R2    0.3736  0.3994 

Notes: Coefficients are shown with z-statistics in parentheses. All regressions include a constant and year 
dummies. Year or quarter refers to the period when the project was completed or suspended. Dollar values 
are in 1996 U.S. dollars, converted from nominal dollars using the U.S. GDP deflator. All regressions use 
robust standard errors. Aggregate sales shock is the residual from an auxiliary regression obtained using the 
aggregate data on worldwide semiconductor shipments described in the text. A simple OLS regression 
equation is used to forecast aggregate sales. 
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Figure 1: Investment Projects at Semiconductor Fabrication Plants, Initiated and 
Suspended Per Quarter, Worldwide  

0

2

4

6

8

10

12

14

16

18

1995Q1 1996Q1 1997Q1 1998Q1 1999Q1 2000Q1 2001Q1 2002Q1
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Initiated Suspended Suspended / Initiated (right axis)

Source: Author’s calculations based on World Fab Watch Databas e and semiconductor industry news 
sources. 

 
Figure 2:  Semiconconductor Shipments Per Quarter, Worldwide  
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Appendix: Detailed Summary of Caplin and Leahy (1994)                
Model 

 

CL94 model a firm’s decision to suspend an irreversible investment that takes T periods 

to build. The firm pays an entry cost of κ > 1 to begin and decides in each period whether 

to continue, temporarily suspend, reactivate, or cancel the project. To continue involves a 

cost per period assumed to be one, and the cost to suspend is assumed to be zero. 

Reactivation after suspension involves an additional cost of µκ ∈ [1, κ]. The firm’s 

choices depend on its perception of the true state of demand when the project is 

completed, which is either high or low. If demand is high at time T, the firm sells one unit 

of output and receives revenue PH; if demand is low, the firm sells nothing and has no 

revenue. 

 

A firm’s beliefs about the state of demand in period T are formed from three sources of 

information. First, there is the ex ante common prior that demand in period T can be 

either high or low, with equal probability. Second, each firm receives private information 

in the form of a noisy signal (either “good” or “bad”) in each period that its project is 

active. Regarding the information content, or quality, of the firm’s private signals, the 

variable p ∈ [0.5,1] indicates the probability that it will receive a good signal when 

demand is actually high, and 1 - p indicates the probability that it will receive a bad signal 

when demand is high. The probability that the firm will receive a good signal when 

demand is actually low is q , and the probability that it will receive a bad signal when 

demand is low is 1 – q. The signals are assumed to be symmetric, such that q = 1 - p. The 

signals are also assumed to be conditionally independent over time and across firms, 

given the true state of demand.   

 

The third source of information is the firm’s observations of the history of decisions by 

all other firms regarding entry, continuation, suspension, reactivation, and cancellation. 

The information gained from observing others is the social learning aspect of the model. 

Each period, the firm updates its beliefs about the state of demand at the end of the 
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project using Bayes’ rule to incorporate the complete history of decisions made by other 

firms through to the end of the previous period, and the string of private signals it has 

received so far. 

 

CL94 define a symmetric Nash equilibrium as a strategy π(c,z), such that π  is optimal 

and uses all the information revealed when other firms also play π and there are E 

entrants, and the ex ante expected profits are zero. The strategy π(c,z) consists of the 

probability of continuing c(Is) ∈ [0,1], and the probability of reactivating if suspended, 

z(Is) ∈ [0,1], where Is is the firm’s information set in period s. Is consists of the firm’s 

private signals through period s, and the history of other firms’ behaviour through to 

period s-1. The exogenous variables are the demand function, P(Q); the length of the 

project, T; the cost of entry, κ; the reactivation cost, µκ; and the information content of 

each signal, p.  

 

If there were complete information, firms would enter in period zero, observe other 

firms’ private signals in period one , and immediately know the true demand state. They 

would then either continue through to period T or exit in period one , and all uncertainty 

about demand would be resolved. In CL94, the state of demand is not known until some 

firms reveal their private information by suspending. Therefore, a private information 

phase covers periods 1 = s = t-1, where t < T is the time of the first suspensions. In the 

private information phase, all firms gather their own private information and continue 

their project. In period t, some firms suspend their project, based on their private signals. 

In the basic model, these first suspensions have no social learning component; these 

agents act independently of the behaviour of others.  

 

CL94 prove that there exists a set of symmetric Nash equilibria in which the proportion 

of firms that choose to suspend in period t is determined by the state of demand, and in 

which these first suspensions reveal the true state of demand. After the first suspensions 
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in period t, the uncertainty about the state of demand is resolved in this model.1 If the 

proportion of firms that suspend is high, then demand is low, and vice versa. Social 

learning occurs in period s > t, when all firms have observed the period t suspensions and 

know the state of demand based on the behaviour of the first firms to suspend. They 

continue or reactivate (if they suspended in t) if demand is high, and they exit if demand 

is low. 

 

The critical result in CL94 is to identify t, the time of the first suspensions. Formally, 

CL94 find the equilibria by determining whether some arbitrary period, t, is a f irst-

suspension time, by solving: 

 

 [ ]{ }min 1, : ( ) 1  for some ( )s s ss
t s T c I I E= ∈ < ∈ Ω ,   (A1) 

 

where Os is the set of all information sets corresponding to the set of firms entering, E. 

The set of possible equilibrium first-suspension times is identified by finding the upper-  

and lower-bound conditions for period t.  

 

The lower bound on the first-suspension time , TL, is the earliest period in which 

suspensions can occur. The firm’s beliefs about the probability of demand being high are 

assumed to increase strictly according to the number of good signals that it receives. 

Firms with the fewest good signals are the most pessimistic about the state of demand, 

and they suspend first. To find the earliest suspension time, CL94 consider when a firm 

with zero good signals chooses to suspend. The suspending firm must believe that the 

savings from suspending and not paying continuation costs if demand is low exceed the  

 

 

 

                                                 

1. This rather strong result from the basic model is weakened in extensions to it, without 
changing its predictions.  
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cost of having to reactivate if demand turns out to be high.  This reasoning generates a 

condition for the lower-bound TL on the first suspension period: 

 

  :    
t

L
pT
q

µκ
 

=  
 

.     (A2) 

 

Equation (A1) shows that the first suspensions must occur late enough that the most 

pessimistic firms are willing to suspend their project and reveal their private information. 

That is, the expected value of continuing must be non-negative for all periods before t for 

all firms, even for a firm with no good signals ; otherwise, the firm would suspend before 

period t. This condition, and the free-entry condition that expected profits are zero, allow 

CL94 to find an upper bound on the earliest suspension time , TU, in which U(s,t) ≥ 0 for 

all periods s ∈ [1, t-1], where U(s,t) denotes the expected value in period s of continuing 

through period t-1 and following an optimal strategy for a firm with zero good signals. 

The upper bound, TU , may be expressed as: 
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− > ∩
  (A3) 

 

and where H and L denote the high- and low-demand states, respectively. The first term 

is the expected revenue less continuation costs that the firm pays if demand is high. The 

second term is the continuation costs through period t-1. The third and fourth terms show 

the additional costs if the firm makes a mistake. Specifically, the third term shows the 

cost of having to reactivate if the firm wrongly suspends in period t. The fourth term is 

the probability that the firm pays the continuation costs in period t when demand is 

actually low. This upper bound on t shows that, since firms pay a continuation cost for 

every active period, firms that believe demand is low would rather not pay further costs. 





Bank of Canada Working Papers
Documents de travail de la Banque du Canada

Working papers are generally published in the language of the author, with an abstract in both official
languages.Les documents de travail sont publiés généralement dans la langue utilisée par les auteurs; ils sont
cependant précédés d’un résumé bilingue.

Copies and a complete list of working papers are available from:
Pour obtenir des exemplaires et une liste complète des documents de travail, prière de s’adresser à:

Publications Distribution, Bank of Canada Diffusion des publications, Banque du Canada
234 Wellington Street, Ottawa, Ontario  K1A 0G9 234, rue Wellington, Ottawa (Ontario) K1A 0G9
E-mail: publications@bankofcanada.ca  Adresse électronique : publications@banqueducanada.ca
Web site: http://www.bankofcanada.ca Site Web : http://www.banqueducanada.ca

2004
2004-31 The New Keynesian Hybrid Phillips Curve: An Assessment

of Competing Specifications for the United States D. Dupuis

2004-30 The New Basel Capital Accord and the Cyclical
Behaviour of Bank Capital M. Illing and G. Paulin

2004-29 Uninsurable Investment Risks C. Meh and V. Quadrini

2004-28 Monetary and Fiscal Policies in Canada: Some Interesting
Principles for EMU? V. Traclet

2004-27 Financial Market Imperfection, Overinvestment,
and Speculative Precaution C. Calmès

2004-26 Regulatory Changes and Financial Structure: The
Case of Canada C. Calmès

2004-25 Money Demand and Economic Uncertainty J. Atta-Mensah

2004-24 Competition in Banking: A Review of the Literature C.A. Northcott

2004-23 Convergence of Government Bond Yields in the Euro Zone:
The Role of Policy Harmonization D. Côté and C. Graham

2004-22 Financial Conditions Indexes for Canada C. Gauthier, C. Graham, and Y. Liu

2004-21 Exchange Rate Pass-Through and the Inflation Environment
in Industrialized Countries: An Empirical Investigation J. Bailliu and E. Fujii

2004-20 Commodity-Linked Bonds: A Potential Means for
Less-Developed Countries to Raise Foreign Capital J. Atta-Mensah

2004-19 Translog ou Cobb-Douglas? Le rôle des durées
d’utilisation des facteurs E. Heyer, F. Pelgrin, and A. Sylvain

2004-18 When Bad Things Happen to Good Banks:
Contagious Bank Runs and Currency Crises R. Solomon

2004-17 International Cross-Listing and the Bonding Hypothesis M. King and D. Segal

2004-16 The Effect of Economic News on Bond Market Liquidity C. D’Souza and C. Gaa


	Working Paper 2004-32 / Document de travail 2004-32
	Investment, Private Information, and Social Learning: A Case Study of the Semiconductor Industry by
	Rose Cunningham
	Bank of Canada Working Paper 2004-32
	September 2004

	Investment, Private Information, and Social Learning: A Case Study of the Semiconductor Industry
	by
	Rose Cunningham
	International Department
	Bank of Canada
	Ottawa, Ontario, Canada K1A 0G9
	rcunningham@bankofcanada.ca
	The views expressed in this paper are those of the author. No responsibility for them should be a...


	Contents
	Acknowledgements
	Abstract
	Résumé


	2004
	2004-31
	2004-30
	2004-29
	2004-28
	2004-27
	2004-26
	2004-25
	2004-24
	2004-23
	2004-22
	2004-21
	2004-20
	2004-19
	2004-18
	2004-17
	2004-16


