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Abstract 

Based on a new approach for measuring the comovements between stock market returns, 
we provide a nonparametric test for asymmetric comovements in the sense that stock 
market downturns will lead to stronger comovements than market upturns. The test is 
used to detect whether asymmetric comovements exist in international stock markets. We 
find the following empirical facts. First, asymmetric comovements exist between the 
United States (U.S.) stock market and the stock markets for Canada, France, Germany, 
and the United Kingdom (U.K.), but the data are unable to reject the null hypothesis of 
the symmetric comovements between the U.S. and Japanese stock markets. Second, 
either a larger negative drop or a positive increase in stock prices leads to stronger 
comovements of stock market returns, indicating that comovements in the data are 
different from comovements implied by a bivariate symmetric distribution, which implies 
that comovements tend to zero as the market returns become more positive or more 
negative. 

JEL classification: G150, G19, F210, C490 
Bank classification: Financial stability; Financial system regulation and policies; 
International topics; Econometric and statistical methods 

Résumé 

Proposant une nouvelle approche en matière de mesure des covariations entre les 
rendements boursiers, l’auteur applique un test non paramétrique en vue d’établir si les 
covariations entre les marchés boursiers internationaux sont asymétriques, en 
l’occurrence, plus prononcées en phase de baisse qu’en phase de hausse des marchés. Il 
fait les constats empiriques suivants. D’abord, il existe des covariations asymétriques 
entre le marché boursier des États-Unis et ceux du Canada, de la France, de l’Allemagne 
et du Royaume-Uni, mais les données ne permettent pas de rejeter l’hypothèse nulle de 
symétrie des covariations entre le marché boursier des États-Unis et celui du Japon. 
Ensuite, plus la diminution ou la montée des cours boursiers est importante, plus les 
covariations entre les rendements boursiers sont fortes. Ce résultat est contraire à celui 
qu’implique une distribution symétrique bivariée, à savoir que les covariations tendent 
vers zéro lorsque les rendements boursiers deviennent très positifs ou très négatifs. 

Classification JEL : G150, G19, F210, C490 
Classification de la Banque : Stabilité financière; Réglementation et politiques relatives 
au système financier; Questions internationales; Méthodes économétriques et statistiques 



1 Introduction

The study of the comovements between asset markets is a central issue in finance as it has im-

portant practical implications in asset allocation and risk management. Since the seminal work of

Grubel (1968) on the benefits of international portfolio diversification (see also, Levy and Sarnat

(1979) and Agmon (1972)), this topic has received special attention in international finance. In

fact, a growing body of literature has emerged more recently on studying comovements of interna-

tional stock market returns (see, King et al. (1994), Lin et al. (1994), Longin and Solnik (2001),

Karolyi and Stulz (1996), Forbes and Rigobon (2002), Brooks and Del Negro (2006), Okimoto

(2008), among others). In particular, many of these studies present empirical evidence suggesting

an asymmetric pattern in comovements of international stock market returns, in the sense that stock

returns show stronger comovements when they go down than when they go up.

All the empirical evidence mentioned above in favor of asymmetric comovements is based on

the Pearson correlation coefficient as the measure of comovements.1 It is well known that the

validity of the Pearson correlation coefficient as the measure of comovements crucially depends

on the assumptions that the relationship between two variables is linear and that the two variables

are jointly normally distributed. However, a number of empirical studies have documented that a

linear relationship based on the normal distribution assumption clearly fails to explain the stylized

facts observed in data and that it is highly undesirable to perform various policy evaluations, risk

management and financial forecasts (Granger (2002), Rodriguez (2007), and papers therein).

The necessity of searching for reliable measures of comovements has prompted researchers to

use alternative approaches to measure comovements in international stock markets. For example,

1Pearson correlation coefficient between two random variables x and y with expected values µx and µy and standard
deviations σx and σy is defined as ρx,y =

E[(x−µx)(y−µy)]
σxσy

.
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using Kendall’s tau coefficient as a measure of comovements, Rodrigue (2007) studies financial

contagion of international stock markets, and Manner (2010) tests for asymmetric comovements.

Even though Kendall’s tau coefficient can capture nonlinear relationships that are not possible to

measure with Pearson correlation coefficient, it depends on a basic assumption that the bivariate

observations are mutually independent, which violates the visible stylized facts in empirical finance

that the autocorrelation of stock returns exists at fixed intervals. Recently, many researchers have

used a copula approach to model the behaviors of comovements in stock returns. The copula

approach is a useful tool in modeling the possibly nonlinear comovements, but it cannot be used

directly to test whether there exist asymmetric comovements in the data.

This paper proposes a new nonparametric approach to measure the comovements between two

stock returns. The approach is based on the difference between the probability that the two returns

simultaneously move up or down and the probability that they move up or down in opposite direc-

tions. Since the approach does not impose either a linear relationship or a restriction of the function

form of the joint distribution of the two returns, it allows for maximal flexibility in fitting the data.

It also does not suffer from the heteroscedasticity associated with Pearson correlation (Forbes and

Rigobon, 2002). Given the nonparametric measure of comovements, we propose a nonparametric

test for asymmetric comovements in the sense that market downturns lead to stronger comove-

ments of stock returns than do market upturns. The test statistic is shown to follow an asymptotic

chi-square distribution under the null hypothesis that the strength of the downside comovements

is not significantly different from the strength of the upside comovements, where the downside

comovements are defined as the comovements resulting from market turndowns, and similarly the

upside comovements occur after market upturns.

Monte Carlo simulations show that our test performs rather well in finite samples. The test
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is applied to detect whether asymmetric comovements exist between the U.S. stock market and

some main international stock markets. We find the following empirical facts. First, asymmetric

comovements exist between the U.S. stock market and the stock markets of Canada, France, Ger-

many, and U.K., but the test is unable to reject the null hypothesis of symmetric comovements of

stock markets between U.S. and Japan. Second, either a larger negative drop or a positive increase

in stock prices tends to lead to stronger comovements, which indicate that comovements in the

data differ from comovements implied by a symmetric distribution suggesting that comovements

tend to zero as returns become positive or negative larger.

The remainder of this paper is organized as follows. In section 2, we propose a new measure

of the comovements between two stock market returns. Based on the measure of comovements,

we propose a nonparametric test for asymmetric comovements of stock market returns. The size

and power performances of the test are examined by Monte Carlo study in section 3. In section

4, the test is applied to investigate whether asymmetric comovements exist between the U.S. stock

market and main international stock markets. Section 5 offers some conclusions. The proofs are

provided in the Appendix.

2 A Nonparametric Test for Asymmetric Comovements

In this section, we propose a nonparametric approach to measure comovements between two stock

market returns. Based on this approach, a nonparametric test is then proposed to detect if market

turndowns lead to stronger comovements than market upturns.

2.1 A Nonparametric Measure of Comovements

Let R1
t and R2

t denote the logarithmic returns on two stock markets in period of time t. Suppose

R1
t and R2

t are standardized to have zero mean and unit variance in order to simplify both the
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computation and statistical analysis. We begin by formally defining the measure of comovements

between R1
t and R2

t as,

cm(R1,R2)≡ Pr[(R1
t+1−R1

t )(R
2
t+1−R2

t )> 0]−Pr[(R1
t+1−R1

t )(R
2
t+1−R2

t )< 0], (1)

where Pr[(R1
t+1−R1

t )(R
2
t+1−R2

t )> 0] is the probability that R1
t moves up or down to R1

t+1 when-

ever R2
t moves up or down to R2

t+1, while Pr[(R1
t+1−R1

t )(R
2
t+1−R2

t ) < 0] is the probability that

R1
t moves up or down to R1

t+1 in the opposite direction as R2
t moves to R2

t+1. If cm(R1,R2) > 0,

we say that the movement from (R1
t ,R

2
t ) to (R1

t+1,R
2
t+1) is a concordant comovement, and that

otherwise it is discordant. Intuitively, the concordant comovement indicates that the two returns

have more opportunities to move up or down simultaneously. Since the measure of comovements

does not impose either a linear relationship or any assumption on the joint distribution of the two

returns, it allows for maximal flexibility in fitting the data. The measure of comovements satisfies

the following important properties:

(i) it is defined for every pair of R1
t and R2

t ;

(ii) it is bounded between −1 and 1, i.e., −1≤ cm(R1,R2)≤ 1;

(iii) it is symmetric, i.e., cm(R1,R2) = cm(R2,R1);

(iv) if R1
t and R2

t are independent, then cm(R1,R2) = 0;

(v) cm(−R1,R2) = cm(R1,−R2) =−cm(R1,R2);

(vi) for any monotonic transformation T (·), cm(T (R1),T (R2)) = cm(R1,R2).

These properties indicate that our nonparametric measure possesses the same properties as

the Pearson correlation coefficient, while also having some properties that the Person correlation

coefficient does not have. For example, the Pearson correlation coefficient of R1
t and R2

t equals

1, if and only if a linear relationship exists between R1
t and R2

t almost surely, i.e., two constants

a and b exist such that R1
t = aR2

t + b, almost surely. However, cm(R1,R2) = 1 does not need to
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have a linear relationship between R1
t and R2

t . For example, let xt be a real time series, R1
t = x2

t ,

and R2
t = x4

t , then cm(R1,R2) = 1, but it is obvious that the relationship between R1
t and R2

t is a

nonlinear relationship.

Given the nonparametric measure of comovements, we measure the downside comovements,

which are defined as comovements resulting from market turndowns, as follows,

cm−(c) = Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t )> 0 | R1
t <−c,R2

t <−c]

−Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t )< 0 | R1
t <−c,R2

t <−c], (2)

where c is a nonnegative constant. Similarly, the upside comovements, which occur after market

upturns, are measured by,

cm+(c) = Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t )> 0 | R1
t > c,R2

t > c]

−Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t )< 0 | R1
t > c,R2

t > c]. (3)

cm−(c) measures the possibilities that the two returns R1
t+1 and R2

t+1 move up or down together

at time t + 1 after stock market downturns at time t, while cm+(c) measures the possibility that

R1
t+1 and R2

t+1 move in the same directions at time t +1 after stock market upturns at time t. The

following theorem 1 gives the closed solutions for cm−(c) and cm+(c).

Theorem 1 Let R1
t and R2

t be two stationary processes with joint probability and distribution

functions f (x,y) and F(x,y), respectively, with margin distribution functions H(x)(of R1
t ) and G(x)

(of R2
t ). Then we have,

cm+(c) =
2
∫

∞

c
∫

∞

c [1−G(x)−H(y)+2F(x,y)] f (x,y)dxdy∫
∞

c
∫

∞

c f (x,y)dxdy
−1 (4)

cm−(c) =
2
∫ −c
−∞

∫ −c
−∞

[1−G(x)−H(y)+2F(x,y)] f (x,y)dxdy∫ −c
−∞

∫ −c
−∞

f (x,y)dxdy
−1. (5)
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If F(x,y) is a symmetric distribution, then

cm+(c) = cm−(c) =
2[
∫

∞

c
∫

∞

c F(x,y) f (x,y)dxdy+
∫ −c
−∞

∫ −c
−∞

F(x,y) f (x,y)dxdy]∫ −c
−∞

∫ −c
−∞

f (x,y)dxdy
−1. (6)

Proof: see the Appendix.

2.2 A Nonparametric Test for Asymmetric Comovements

Given the measures of the downside and upside comovements, we are interested in testing whether

the strength of the downside comovements is not significantly different from the strength of the

upside comovements. Thus, the null hypothesis is,

H0 : cm+(c) = cm−(c), for all c≥ 0. (7)

If the null hypothesis is rejected, asymmetric comovements must exist. The alternative hypothesis

is,

Ha : cm+(c) 6= cm−(c), for some c≥ 0. (8)

Hong et al. (2007) propose a test for asymmetric correlations of stock returns. Their test is

based on the comparison between downside correlations and upside correlations. We construct our

test in a similar way to Hong et.al (2007). However, our test is based on the comparison between

the downside comovements and the upside comovements, which are defined in equations (2) and

(3).

Let c1,c2, ...,cm be m chosen nonnegative positive numbers. If the null hypothesis is true, the

following m×1 difference vector

cm+− cm− = [cm+(c1)− cm−(c1), ...,cm+(cm)− cm−(cm)]
′ (9)

must be equal to zero.
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To construct a feasible test statistic, we need to estimate both cm−(ci) and cm+(ci) for 1≤ i≤

m.

Let {R1
t ,R

2
t }T

t=1 be a set of sample with size T. For a given ci, Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t )> 0 |

R1
t <−ci,R2

t <−ci] and Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t )< 0 | R1
t <−c,R2

t <−ci] can respectively be

estimated by,

∑
n−1
t=1 I[(R2

t+1−R2
t )(R

1
t+1−R1

t )> 0]I[R1
t <−ci,R2

t <−ci]

∑
n−1
t=1 I[R1

t <−ci,R2
t <−ci]

(10)

and

∑
n−1
t=1 I[(R2

t+1−R2
t )(R

1
t+1−R1

t )< 0]I[R1
t <−ci,R2

t <−ci]

∑
n−1
t=1 I[R1

t <−ci,R2
t <−ci]

, (11)

where I[·] is the indicator function and S(R1
t ,R

1
t+1,R

2
t ,R

2
t+1) = I[(R2

t+1−R2
t )(R

1
t+1−R1

t ) > 0]−

I[(R2
t+1−R2

t )(R
1
t+1−R1

t )< 0].

Putting (10) and (11) into (2) yields the estimator of cm−(ci),

ˆcm−(ci) =
∑

n−1
t=1 {S(R1

t ,R
1
t+1,R

2
t ,R

2
t+1)}I[R1

t <−ci,R2
t <−ci]

∑
n−1
t=1 I[R1

t <−ci,R2
t <−ci]

, (12)

and we obtain the estimator of cm+(ci) by putting (10) and (11) into (3),

ˆcm+(c) =
∑

n−1
t=1 {S(R1

t ,R
1
t+1,R

2
t ,R

2
t+1)}I[R1

ti > c,R2
t > ci]

∑
n−1
t=1 I[R1

t > ci,R2
t > ci]

. (13)

From (9), (12), and (13), we obtain the estimator of cm+− cm−,

ˆcm+− ˆcm− = [ ˆcm+(c1)− ˆcm−(c1), ..., ˆcm+(cm)− ˆcm−(cm)]
′. (14)

It can be proven (see Appendix) that under null hypothesis and regular conditions,
√

n( ˆcm+−

ˆcm−) converges to N[0,Ω] in distribution, where Ω is a positive definite variance-covariance ma-

trix. Ω can consistently be estimated by the following almost surely positive definite matrix,

Ω̂ =
n−1

∑
l=−n+1

k(l/p)δ̂l, (15)

7



where δ̂l is an m×m matrix with (i, j)− th element,

δ̂l(i, j) =
1
n

n

∑
t=|l|+1

η̂t(ci)η̂t−|l|(c j), (16)

η̂t(ci) =
{S(R1

t ,R
1
t+1,R

2
t ,R

2
t+1)− ˆcm+(ci)}I[R1

t > c,R2
t > ci]

∑
n
t=1 I[R1

t > c,R2
t > ci]/n

−
{S(R1

t ,R
1
t+1,R

2
t ,R

2
t+1)− ˆcm−(c)}I[R1

t <−c,R2
t <−ci]

∑
n
t=1 I[R1

t <−c,R2
t <−ci]/n

, (17)

k(·) is a kernel function that assigns a suitable weight to each lag of order l, and p is the smoothing

parameter or lag truncation order.

With (14) and (15), we are ready to define the test statistic for testing the null hypothesis of

symmetric comovements as,

Tcm = n( ˆcm+− ˆcm−)′Ω̂−1( ˆcm+− ˆcm−). (18)

The following theorem provides the asymptotic null distribution of the test statistic.

Theorem 2 Suppose Assumptions A.1-A.4 hold and p = p(n)→ ∞, p/n→ 0 as n→ ∞. Under

the null hypothesis, we have,

Tcm = n( ˆcm+− ˆcm−)′Ω̂−1( ˆcm+− ˆcm−) d−→ χ
2
m, as n→ ∞, (19)

where χ2
m is a chi-square distribution with degrees of freedom m.

Proof: see the Appendix.

Theorem 2 indicates that our test statistic has an asymptotic chi-square distribution with de-

grees of freedom m. Consequently, the critical values for our test are available, making its appli-

cations easy to carry out. Since the test statistic does not rely on the assumption that the data are

drawn from a given model, it is a model free test, which can directly be used to test whether the

asymmetric comovements exist in data.
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The asymptotic bias of kernel estimators depends on the smoothness of the kernel at zero and

on the smoothness of the spectral density matrix f (λ) of {δl} at zero, where δl is an m×m matrix

with (i, j)− th element δl(i, j) = 1
n ∑

n
t=|l|+1 ηt(ci)ηt−|l|(c j),ηt(c) = limn→∞η̂t(c). For q ∈ [0,∞),

following Andrews (1991), we define

kq = limx→0
1− k(x)
| x |q

. (20)

The smoother the kernel is at zero, the larger is the value of q for which kq is finite. Andrews

(1991) defines the optimal smoothing parameters {p∗n} as follows,

p∗n = (qk2
qα(q)n/

∫
k2(x)dx))1/(2q+1), (21)

where α(q) is a function of the unknown spectral density matrix f (λ) (equation 5.2 in Andrews,

1991).

3 Finite Sample Performance

In this section, we use Monte Carlo simulations to examine the finite-sample performance of the

test. The data are generated from two AR(1)-GARCH(1, 1) models,

R1
t = µ+φR1

t−1 +η
1
t , (22)

R2
t = µ+φR2

t−1 +η
2
t , (23)

where ηi
t =

√
hi

tε
i
t , and hi

t = α+ βhi
t−1 + γ(Ri

t − µ− φRi
t−1)

2, for i = 1,2. The parameter values

are set as (µ,φ,α,β,γ) = (0.01,0.05,0.05,0.85,0.1), and ε1
t and ε2

t are supposed to follow a joint

distribution H(x,y). According to copula theory, a unique distribution function C(·, ·) exists, which

is called a copula, such that for all (x,y) ∈ R2,H(x,y) =C(F
ε1

t
(x),F

ε2
t
(y)), where F

ε1
t
(x) and F

ε2
t
(y)

are corresponding marginal distributions of ε1
t and ε2

t .
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By using different specifications of the copula function C(F
ε1

t
(x),F

ε2
t
(y)), equations (22) and

(23) can come up with different data-generating processes. A normal copula is Cnor(u,v,ρ) =

Φρ(Φ
−1(u),Φ−1(v)), where Φρ is the standard bivariate distribution function with correlation ρ.

A bivariate Clayton copula is Cclay(u,v,τ) = (u−τ + v−τ− 1)−1/τ, where parameter τ > 0. From

equations (4) and (5) in theorem 1, we know that a normal copula generates symmetric comove-

ments, while a bivariate Clayton copula produces asymmetric comovements. The first copula used

to generate data is the mixture copula that combines a normal copula with a Clayton copula,

Cmix(u,v;ρ,τ,k) = kCnor(u,v,ρ)+(1− k)Cclay(u,v,τ), (24)

where k is the mixture parameter, which determines the strength of asymmetric comovements in

the data generated from the mixture copula. The lower k is, the more the mixture copula generates

asymmetries in the data. The second copula is the Generalized Joe-Clayton (GJC) copula, which

is proposed by Patton (2006) and is specified as follows,

CGJC(u,v;τ
u,τl) = 0.5(CJC(u,v;τ

u,τl)+CJC(1−u,1− v;τ
u,τl +u+ v−1), (25)

where CJC is the Joe-Clayton copula, which is given by,

CJC(u,v;τ
u,τl) = 1− (1−{[1− (1−u)κ]−σ−1}−1/σ)1/κ, (26)

where κ = 1/log2(2− τu),σ = −1/log2(τ
l) and τu ∈ (0,1],τl ∈ (0,1]. The GJC copula has two

tail comovement parameters, τu and τl. It can produce symmetric comovements when τu = τl,

while it generates asymmetric comovements if τu 6= τl. The larger the distance |τu− τl| is, the

more the GJC produces asymmetries in the data. Given the relationship between the distribution

function and its copula function, we generate data by following the way in Okimoto (2008). In

this simulation, we choose four sets of exceedance levels: c1 = 0;(c1,c2) = (0,0.5);(c1,c2,c3) =
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(0,0.5,1);(c1,c2,c3,c4) = (0,0.5,1,1.5). The Bartlett kernel, k(z) = (1−|z|)I(|z|< 1), is used to

estimate the variance-covariance matrix, and the soothing parameter p is determined by the data

with the procedure in Andrew (1991).

Table 1 reports the estimated size and power of our test. The second column of table 1 reports

the estimated sizes when the symmetric comovements are generated from either the mixture copula

(k = 0) or the GJC copula (τu = τl = 0.1), which indicates that our test has satisfactory size perfor-

mance at all four sets of exceedance levels for sample size as small as 250. Columns 3-5 of table

1 report the estimated power of our test when the null hypothesis is that asymmetric comovements

do not exist but in fact the data are generated from the mixture copula (k 6= 0) or the GJC copula

(τu 6= τl). When the data are generated from the mixture copula, the test’s power always increases

rapidly with respect to the decrease in k, which indicates that our test becomes more powerful when

the data are more asymmetric. For example, for T = 1000 and (c1,c2,c3,c4) = (0,0.5,1,1.5), the

power increases to 96.6% when k decreases to 0.25. When the data are generated from the GJC

copula, our test power increases with respect to the increase in the distance |τu− τl|, which indi-

cates that more asymmetric the data, more powerful the test is. Overall, the results of our Monte

Carlo simulation indicate that our test has satisfactory size performance, and good power in detect-

ing asymmetric comovements implied by the data considered.

4 Do Asymmetric Comovements Exist in International Stock
Markets?

We apply our test to examine whether market downturns will lead to stronger comovements than

market upturns between the U.S. stock market and the stock markets of Canada, France, German,

Japan, and U.K.. Following Longin and Solnik (2001) and Okimoto (2008), our empirical study

is based on monthly total stock market index for six countries: Canada, France, Germany, Japan,
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U.K., and U.S.. The data are obtained from Datastream with the sample period from 1973:1 to

2009:3. We define stock returns for each country as 100 times the change in the natural logarithm

of each country’s stock index.

Descriptive statistics on these time series are presented in Table 2. France and the U.K. mar-

kets exhibit positive skewness, while the stock markets of Canada, Germany, Japan, and U.S.

exhibit negative skewness, which indicates that the distributions of these individual stock returns

display asymmetries.2 The Jarque-Bera statistics strongly reject normality. The results of a formal

augmented Dickey-Fuller non-stationary test suggest that the null hypothesis of non-stationary is

rejected at the 5 % significance level. Since the test is known to have low power, which is the

probability of rejecting the null hypothesis when it is not true, even a slight rejection means that

stationary of the series is very likely.

We examine the comovements of the U.S. stock market with the other five stock markets sepa-

rately. Hence, we have five country pairs: U.S. and Canada, U.S. and Frence, U.S. and Germany,

U.S. and U.K., and U.S. and Japan. We calculate the test statistic Tcm by setting the exceedance

levels C = [0,0.5,1,1.5]. In the empirical work, we use the Bartlett kernel, and the smoothing

parameter is determined by the data with the procedure in Andrews (1991). Table 3 provides the

results for testing symmetric comovements at a 5% significant level for the five country pairs. We

find statistically significant evidence of the asymmetric comovements between the U.S. stock mar-

ket and the stock markets of Canada, Frence, Germany, and U.K., but the data cannot reject the

null hypothesis of symmetric comovements between the U.S. and Japanese stock markets.

To get a visual impression of asymmetric comovements, in figures 1-5 we plot the estimations

of the probabilities of downside and upside comovements for the five country pairs. The figures for

2The skewness or asymmetry in the distribution of individual stock returns has been reported by numerous authors
(Harvey and Siddique (2000), Ait-Sahalia and Brandt (2001), Patton (2004), among others.) over the last three decades.
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U.S. and Canada, U.S. and Frence, U.S. and Germany, and U.S. and U.K., provide clear pictorial

representations of the asymmetric comovements. There are two main features of the plots. First,

there is a sharp break evident at c = 0, where the conditional event changes from (R1
t < 0,R2

t < 0)

to (R1
t > 0,R2

t > 0), which suggests that negative returns will lead to stronger comovements than

positive returns. Obviously, we observe that far from being symmetric, the downside comove-

ments ( for negative levels) are always greater than the upside comovements ( for positive levels ).

Second, instead of tapering off to zero, as in the case of a bivariate normal distribution, the down-

side comovements tend to increase as returns become more negative. Unlike the empirical results

obtained by Longin and Solnic (2001), our empirical results indicate that instead of decreasing to

zero, the upside comovements tend to increase as returns become more positive. The comovements

in the data differ from the comovements generated by a bivariate symmetric distribution, such as a

bivariate normal distribution, which predicts symmetric comovements and both upside and down-

side comovements decrease to zero. Figure 4 shows that downside comovements are not always

higher than their respective upside comovements, graphically suggesting that we cannot reject the

null hypothesis of symmetric comovements of stock returns between the U.S and Japanese stock

markets, which is in line with the result in table 3.

5 Conclusion

In this paper, we propose a new approach to measure comovements between two stock returns.

The measure of comovements reflects the direction of the movement between the two returns and

allows for the nonlinear relationship between the two returns. Based on the measure of comove-

ments, we develop a nonparametric test to detect whether asymmetric comovements exist in the

sense that stock market downturns will lead to stronger comovements than market upturns. Monte

13



Carlo simulations show that our test has satisfactory size performance and good power in detecting

asymmetric comovements in the data considered.

Applying the test to international stock markets, we find the following empirical facts: first,

asymmetric comovements exist between the U.S. stock market and the stock markets of Canada,

France, Germany, and U.K., but the test is unable to reject the null hypothesis of symmetric co-

movements of stock markets between U.S. and Japan. Second, unlike the empirical results from

Longin and Solnic (2001), our empirical results indicate that the upside comovements and the

downside comovements tend to increase as returns become more positive and more negative, re-

spectively, which indicates that the comovements in the data are different from the comovements

implied by a bivariate symmetric distribution, which suggests that comovements tend to zero when

returns become more positive or more negative. The empirical results prompt us to use more

flexible models to model the comovements of international stock markets.
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Table 1: Percentage Rejections of the H0

(ε1
t ,ε

2
t ) Generated from the Mixture Copula

k=1.00 k=0.75 k=0.5 k=0.25
T=250
{0} 0.043 0.175 0.432 0.801
{0, 0.5 } 0.051 0.141 0.331 0.722
{0, 0.5, 1} 0.049 0.121 0.275 0.713
{0, 0.5, 1, 1.5} 0.063 0.135 0.208 0.699

T=500
{0} 0.035 0.327 0.778 0.963
{0, 0.5 } 0.046 0.201 0.521 0.951
{0, 0.5, 1} 0.050 0.204 0.407 0.899
{0, 0.5, 1, 1.5} 0.042 0.175 0.399 0.894

T=1000
{0} 0.051 0.518 0.861 0.995
{0, 0.5 } 0.040 0.401 0.800 0.991
{0, 0.5,1} 0.060 0.358 0.715 0.987
{0, 0.5, 1, 1.5} 0.054 0.302 0.663 0.966

(ε1
t ,ε

2
t ) Generated from the GJC Copula

(τu = τl) (τu = 0.1,τl = 0.3) (τu = 0.1,τl = 0.4) (τu = 0.1,τl = 0.5)
T=250
{0} 0.049 0.231 0.395 0.539
{0, 0.5 } 0.061 0.234 0.318 0.440
{0, 0.5,1} 0.054 0.182 0.290 0.369
{0, 0.5, 1, 1.5} 0.036 0.107 0.144 0.169

T=500
{0} 0.046 0.447 0.608 0.788
{0, 0.5 } 0.069 0.387 0.517 0.733
{0, 0.5, 1} 0.062 0.346 0.500 0.671
{0, 0.5, 1, 1.5} 0.047 0.180 0.299 0.321

T=1000
{0} 0.051 0.733 0.893 0.971
{0, 0.5 } 0.060 0.638 0.850 0.957
{0, 0.5, 1} 0.053 0.587 0.796 0.938
{0, 0.5, 1, 1.5} 0.039 0.434 0.599 0.697
The table reports the size and power of Tcm. The nominal size of the test is set at 5%.
The data-generating processes are: Ri

t = 0.01+0.05R1
t−1 +ηi

t , where ηi
t =

√
hiεi

t , and
hi

t = 0.05+0.85hi
t−1 +0.1(Ri

t−0.01−0.05Ri
t−1)

2, i = 1,2. The results are based on
1000 simulations drawn from the mixture copula and Generalized Joe-Clayton copula,
which are used to generate (ε1

t ,ε
2
t ). H0 : cm+(c) = cm−(c) for all c≥ 0, Ha : cm+(c)

6= cm−(c), for some c≥ 0. 15



Table 2: Summary Statistics of the Data

Canada France Germany Japan U.K. U.S.

Mean 0.4985 0.5617 0.5616 0.1820 0.5523 0.4354

Std.Dev 3.9062 5.1000 4.4068 4.4323 4.8145 3.8428

Skewness -1.0205 0.7233 -1.1552 -0.5133 0.1729 -1.0740

Kurtosis 7.2196 4.6244 7.0015 5.3253 13.0876 7.4678

Min -24.3267 -20.1684 -25.1595 -24.8746 -25.2891 -23.8226

Max 11.3938 14.0825 10.7125 13.7299 37.0598 11.2983

Jarque-Bera 397.2957 85.5647 386.0702 116.8302 1842 444.4021

5% Critical value 5.9915 5.9915 5.9915 5.9915 5.9915 5.9915

Augmented D.F. test statistic -14.749 -14.561 -14.513 -14.635 -14.962 -15.018

5% Critical value -2.873 -2.873 -2.873 -2.873 -2.873 -2.873
This table reports descriptive statistics of stock market returns of Canada, France, Germany, Japan
U.K., and U.S.. The frequency of the data is monthly. The sample period is from 1973:1 to 2009:3.
Under the null of normality, the Jarque-Bera test statistic follows a chi-squared distribution with two
degrees of freedom.
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Table 3: Testing Symmetric Comovement between U.S. and International Stock Markets
Canada France Germany Japan U.K.

Test Statistic 19.5571 20.6290 15.0320 5.2044 11.9383

5% Critical value 9.4877 9.4877 9.4877 9.4877 9.4877

Results Reject Reject Reject Reject Reject
This table reports the testing results of symmetric comovement between U.S.
stock market and stock markets of Canada, France, Germany, Japan and U.K..
The null hypothesis is symmetric comovement. C = {0,0.5,1,1.5} is used, and
5% critical value is 9.4877. The sample period is from 1973 : 1 to 2009 : 3.
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Appendix
All convergencies are taken as n→ ∞. To derive the null asymptotic distribution, we need the

following regularity conditions.

Assumption A.1. {R1
t ,R

2
t } is a mean zero, and bivariate stationary α−mixing process with

α−mixing coefficient satisfying ∑
∞
j=1 α( j)(κ−1)/κ < ∞, and Supt≤1(E|R1

t |4κ + E|R2
t |4κ) < ∞ for

some κ > 1.

Assumption A.2. The kernel function k(·) : R→ [−1,1], is symmetric about zero and is con-

tinuous at all points except a finite number of them on R, with k(0) = 1 and
∫

∞

−∞
|k(z)|dz < ∞.

Assumption A.3. The bandwidth p = p(T )→ ∞, p/T → 0 as the sample size T → ∞.

Assumption A.4. The kernel function k(x) satisfies: (i)|k(x)| ≤ c|x|−b for some b > 1+ 1/q,

where q ∈ (0,∞) is such that kq ∈ (0,∞), and (ii) |k(x)− k(y)| ≤ c|x− y| ∀x,y ∈ R.

Assumption A.1 allows for the existence of volatility clustering, which is a well-known styl-

ized fact for most financial time series. The mixing condition is commonly used for a nonlinear

time series analysis. This condition characterizes temporal dependence in return series and rules

out long memory processes. It is well known that returns of equity returns have weak serial cor-

relation. Therefore, the mixing condition is quite reasonable in the present context. Assumptions

A.2 and A.3 are standard conditions on the kernel function k(·) and bandwidth p. These conditions

are sufficient when we use nonstochastic bandwidths. Assumption 4 imposes some extra condi-

tions on the kernel function, which is needed when we use data-dependent bandwidth p̂. Many

commonly used kernels, such as the Bartlett, Parzen, and quadratic-spectral kernels, are included.

But, Assumption 4 rules out the truncated and Daniell kernels.

Proof of Theorem 1:

Because of Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t )< 0 | R1
t > c,R2

t > c] = 1−Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t )>
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0 | R1
t > c,R2

t > c], and Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t ) > 0 | R1
t > c,R2

t > c] = Pr[R2
t+1 ≥ R2

t ,R
1
t+1 ≥

R1
t | R1

t > c,R2
t > c]+Pr[R2

t+1 ≤ R2
t ,R

1
t+1 ≤ R1

t | R1
t > c,R2

t > c], we have,

cm+(c) = 2Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t )> 0 | R1
t > c,R2

t > c]−1

=
2Pr[R2

t+1 ≥ R2
t ,R

1
t+1 ≥ R1

t ,R
1
t ≥ c,R2

t ≥ c]
Pr[R1

t ≥ c,R2
t ≥ c]

+
2Pr[R2

t+1 ≤ R2
t ,R

1
t+1 ≤ R1

t ,R
1
t ≥ c,R2

t ≥ c]
Pr[R1

t ≥ c,R2
t ≥ c]

−1

=
2
∫

∞

c
∫

∞

c Pr[R1
t+1 ≥ y,R2

t+1 ≥ x] f (x,y)dxdy∫
∞

c
∫

∞

c f (x,y)dxdy

+
2
∫

∞

c
∫

∞

c Pr[R1
t+1 ≤ y,R2

t+1 ≤ x] f (x,y)dxdy∫
∞

c
∫

∞

c f (x,y)dxdy
−1

=
2
∫

∞

c
∫

∞

c [1−G(x)−H(y)+2F(x,y)] f (x,y)dxdy∫
∞

c
∫

∞

c f (x,y)dxdy
−1. (A.1)

To obtain (A.1), we have used the fact that
∫

∞

c
∫

∞

c Pr[R1
t+1 ≥ y,R2

t+1 ≥ x] f (x,y)dxdy =
∫

∞

c
∫

∞

c [1−

H(x)−G(y)+F(x,y)] f (x,y)dxdy. Similarly, we can prove that,

cm−(c) = 2Pr[(R2
t+1−R2

t )(R
1
t+1−R1

t )> 0 | R1
t <−c,R2

t <−c]−1

=
2
∫ −c
−∞

∫ −c
−∞

[1−G(x)−H(y)+2F(x,y)] f (x,y)dxdy∫ −c
−∞

∫ −c
−∞

f (x,y)dxdy
−1. (A.2)

From (A.1) and (A.2), we obtain (4) and (5) in Theorem 1, respectively. If F(x,y) is a symmetric

distribution (Pr[R1
t ≥ x,R2

t ≥ y] = Pr[R1
t ≤ −x,R2

t ≤ −y],and f (x,y) = f (−x,−y), almost for all

(x,y)), then we have,

cm+(c) =
Pr[R1

t+1 ≤ R1
t ,R

2
t+1 ≤ R2

t ,R
1
t > c,R2

t > c]
Pr[R1

t > c,R2
t > c]

+
Pr[R1

t+1 ≤−R1
t ,R

2
t+1 ≤−R2

t ,R
1
t > c,R2

t > c]
Pr[R1

t > c,R2
t > c]

=

∫
∞

c
∫

∞

c Pr[R1
t+1 ≤ x,R2

t+1 ≤ y] f (x,y)dxdy∫
∞

c
∫

∞

c f (x,y)dxdy

+

∫
∞

c
∫

∞

c Pr[R1
t+1 ≤−x,R2

t+1 ≤−y] f (x,y)dxdy∫
∞

c
∫

∞

c f (x,y)dxdy

=

∫
∞

c
∫

∞

c F(x,y) f (x,y)dxdy+
∫ c
−∞

∫ c
−∞

F(x,y) f (x,y)dxdy∫
∞

c
∫

∞

c f (x,y)dxdy
, (A.3)
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and

cm−(c) =
Pr[R1

t+1 ≤ R1
t ,R

2
t+1 ≤ R2

t ,R
1
t <−c,R2

t <−c]
Pr[R1

t <−c,R2
t <−c]

+
Pr[R1

t+1 ≤−R1
t ,R

2
t+1 ≤−R2

t ,R
1
t <−c,R2

t <−c]
Pr[R1

t <−c,R2
t <−c]

=

∫ −c
−∞

∫ −c
−∞

Pr[R1
t+1 ≤ x,R2

t+1 ≤ y] f (x,y)dxdy∫ −c
−∞

∫ −c
−∞

f (x,y)dxdy

+

∫ −c
−∞

∫ −c
−∞

Pr[R1
t+1 ≤−x,R2

t+1 ≤−y] f (x,y)dxdy∫ −c
−∞

∫ −c
−∞

f (x,y)dxdy

=

∫ −c
−∞

∫ −c
−∞

F(x,y) f (x,y)dxdy+
∫

∞

c
∫

∞

c F(x,y) f (x,y)dxdy∫ −c
−∞

∫ −c
−∞

f (x,y)dxdy
. (A.4)

Form (A.3) and (A.4) and
∫ −c
−∞

∫ −c
−∞

f (x,y)dxdy =
∫

∞

c
∫

∞

c f (x,y)dxdy, we have cm+(c) = cm−(c).

Proof of Theorem 2:

We first use the Cramer-Wold device to show that
√

n( ˆcm+− ˆcm−) converges to N(0,Ω) in

distribution. Let λ = (λ1, ...,λm)
′ be an m×1 vector such that λ′λ = 1. We have

λ
′( ˆcm+− ˆcm−)

=
m

∑
i=1

λi[ ˆcm+(ci)− ˆcm−(ci)]

=
1
n

n

∑
t=1

m

∑
i=1

λi[S(R1
t ,R

1
t+1,R

2
t ,R

2
t+1)− cm+(ci)]I[R1

t > ci,R2
t > ci]/

1
n

n

∑
t=1

I[R2
t > ci,R1

t > ci]

−1
n

n

∑
t=1

m

∑
i=1

λi[S(R1
t ,R

1
t+1,R

2
t ,R

2
t+1)− cm−(ci)]I[R1

t <−ci,R2
t <−ci]/

1
n

n

∑
t=1

I[R2
t <−ci,R1

t <−ci]

+
m

∑
i=1

λi(cm+(ci)− cm−(ci))

=
1
n

n

∑
t=1

m

∑
i=1

λi(η
+
t (ci)−η

−
t (ci))+

1
n

n

∑
t=1

m

∑
i=1

λiη
+
t (ci)(

Pr[R1
t > ci,R2

t > ci]

∑
n
t=1 I[R1

t > ci,R2
t > ci]/n

−1)

−1
n

n

∑
t=1

m

∑
i=1

λiη
−
t (ci)(

Pr[R1
t <−ci,R2

t <−ci]

∑
n
t=1 I[R1

t <−ci,R2
t <−ci]/n

−1)+
m

∑
i=1

λi(cm+(ci)− cm−(ci))

=
1
n

n

∑
t=1

m

∑
i=1

λi(η
+
t (ci)−η

−
t (ci))+op(

1
n

n

∑
t=1

m

∑
i=1

λi(η
+
t (ci)−η

−
t (ci)))

=
1
n

n

∑
t=1

ηt +op(
1
n

n

∑
t=1

ηt) (A.5)
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where ηt = ∑
m
t=1 λi(η

+
t (ci)−η

−
t (ci)) and

η
+
t (ci) =

{S(R1
t ,R

1
t+1,R

2
t ,R

2
t+1)− cm+(ci)}I[R1

t > ci,R2
t > ci]

Pr[R1
t > ci,R2

t > ci]
,

η
−
t (ci) =

{S(R1
t ,R

1
t+1,R

2
t ,R

2
t+1)− cm−(ci)}I[R1

t <−ci,R2
t <−ci]

Pr[R2
t <−ci,R1

t <−ci]
.

In addition, in(A.5) we use the fact that under null hypothesis, cm+(ci) = cm−(ci) for i = 1, ...m.

From A.5, we know that to prove
√

n( ˆcm+− ˆcm−) converges to N(0,Ω), we consider

√
nλ
′( ˆcm+− ˆcm−) =

1√
n

n

∑
t=1

ηt +op(
1√
n

n

∑
t=1

ηt). (A.6)

We have

V = limn→∞var[n−1/2
n

∑
t=1

ηt ] =
∞

∑
l=−∞

cov(ηt ,ηt−l)

=
m

∑
i=1

m

∑
j=1

λiλ jΩi j = λ
′
Ωλ. (A.7)

Because Ω is a positive definite matrix, 0 < V < ∞ for all λ such that λ′λ = 1. By the central

limit theorem for mixing processes (White 1984, Theorem 5.19), we have λ
√

n( ˆcm+− ˆcm−)/
√

V

converges to N(0,1) in distribution. It follows from the Cramer-Wold device that
√

n( ˆcm+− ˆcm−)

converges to N(0,Ω) in distribution. Therefore, we have,

n( ˆcm+− ˆcm−)′Ω−1( ˆcm+− ˆcm−) d−→ χ
2
m. (A.8)

Next, we show that Ω̂
p−→ Ω. We only need to prove that Ω̂i j

p−→ Ωi j, for 1 ≤ i, j ≤ m. Let

Ω̃i j = ∑
n−1
l=−n+1 k(l/p)δl(i, j), and Ωn

i j = ∑
n−1
l=1−n Eδl(i, j) then we have

Ω̂i j−Ωi j = (Ω̂i j− Ω̃i j)+(Ω̃i j−EΩ̃i j)+(EΩ̃i j−Ω
n
i j)+(Ωn

i j−Ωi j) (A.9)

We have

√
n

p
| Ω̂i j− Ω̃i j |≤

1
p

n−1

∑
l=−n+1

| k(l/p) ||
√

n(δ̂l(i j)−δl(i, j)) | . (A.10)
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It is straightforward to prove that |
√

n(δ̂l(i j)−δl(i, j)) |= Op(1) uniformly for−n+1≤ l ≤ n+1

and a given i, j. This result, and the fact that 1
p ∑

n−1
l=−n+1 | k(l/p) |→

∫
∞

−∞
| k(x) | dx imply that

Ω̂i j− Ω̃i j
p−→ 0.

It follows from Proposition 1(a) in Andrews (1991) that var(Ω̃i j) = O(p/n). Consequently, by

Chebyshev’s inequality, we have

Ω̃i j−EΩ̃i j = Op(
√

p/n) = op(1). (A.11)

By Proposition 1(b) in Andrews (1991), EΩ̃i j−Ωn
i j = o(1), q = 0. Obviously Ωn

i j converges to

Ωi j.

Suppose that the bandwidth parameter p is a function of the data, which is expressed as p̂, and

Ω̂∗ is the kernel estimator of Ω.

Ω̂
∗
i j− Ω̂i j = 2

r(n)

∑
l=1

(k(l/ p̂)− k(l/p))δ̂l(ci,c j)

+2
n−1

∑
j=r(n)+1

k(l/p̂)δ̂l(ci,c j)

−2
n−1

∑
l=r(n)+1

k(l/p)δ̂l(ci,c j)

= 2In1(i, j)+2In2(i, j)−2In3(i, j), (A.12)

where r(n) is defined as in Andrews (equation 7.2 in Andrews, 1991). We need to show that

Inm(i, j)→ 0 for m = 1,2,3. For In1, we have

|In1(i, j)| ≤ c
r(n)

∑
l=1

l|1
p̂
− 1

p
||δ̂l(ci,c j)|

≤ c
r(n)

∑
l=1

l|1
p̂
− 1

p
||δ̂l(ci,c j)−δl(ci,c j)|+ c

r(n)

∑
l=1

l|1
p̂
− 1

p
||δl(ci,c j)|. (A.13)

To show In1(i, j) → 0,we only need to show that ∑
r(n)
l=1 l| 1p̂ −

1
p ||δ̂l(ci,c j)− δl(ci,c j)| → 0 and

∑
r(n)
l=1 l| 1p̂ −

1
p ||δl(ci,c j)| → 0.
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Since δ̂l(ci,c j)−δl(ci,c j) = Op(n−1/2) uniformly for l, we have

r(n)

∑
l=1

l|1
p̂
− 1

p
||δ̂l(ci,c j)−δl(ci,c j)| ≤ c|1

p̂
− 1

p
|r(n)

r(n)

∑
l=1
|δ̂l(ci,c j)−δl(ci,c j)|

= Op(n
−1+2v−q−1/2

2q+1 ) = op(1), (A.14)

because of assumption A.4 and q > 1/2.

r(n)

∑
l=1

l|1
p̂
− 1

p
||δl(ci,c j)| ≤ |

1
p̂
− 1

p
|r(n)

∞

∑
l=1
|δl(ci,c j)|= O(n

v−1
2q+1 ) = op(1), (A.15)

because of v < 1 and ∑
∞
l=1 |δl(ci,c j)|< ∞. (A.13), (A.14), and (A.15) indicate that In1(i, j)→ 0.

In2(i, j) ≤
n−1

∑
l=r(n)+1

k(l/ p̂)|δ̂l(i, j)−δl(i, j)|+
n−1

∑
l=r(n)+1

k(l/p̂)|δl(i, j)|

= I1
n2(i, j)+ I2

n2(i, j). (A.16)

For I1
n2(i, j), we have

I1
n2(i, j) ≤ c

n−1

∑
l=r(n)+1

(l/ p̂)−b|δ̂l(i, j)−δl(i, j)|

= Op(n
b

2q+1−1/2)
∞

∑
l=r(n)

l−b

= Op(nb/(2q+1)−1/2−v(b−1)/(2q+1)) = op(1). (A.17)

For I2
n2(i, j), we have

I2
n2(i, j)≤

∞

∑
l=r(n)

|δl(i, j)|= op(1). (A.18)

A.13 and A.14 imply that In2(i, j) = op(1). Using a similar way as we show In2(i, j) = op(1), we

can show that In3(i, j) = op(1).
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 Figure 1: Downside and Upside Comovements between Canada and US
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 Figure 2: Downside and Upside Comovements between France and US
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 Figure 3: Downside and Upside Comovements between Germany and US
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 Figure 4: Downside and Upside Comovements between Japan and US
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 Figure 5: Downside and Upside Comovements between UK and US
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