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Abstract

State-space models have long been popular in explaining the evolution of various eco

variables. This is mainly because they generally have more economic content than do oth

their class of parsimonious models (for example, VARs). Yet, in spite of their advantages, u

these models until recently was limited by the assumption that all the innovations therein h

be conditionally normally distributed. Consequently, one could not model condition

heteroskedastic series within that framework. The study by Harvey, Ruiz, and Sentana (

changed that. These authors showed how ARCH effects could be handled in a state

framework, whether such innovations were in the measurement equations or in the tran

ones. For these purposes, the authors modified the usual Kalman filter and develop

approximate (or quasi-optimal) filter to estimate these models.

An application of the above framework was made recently by Kichian (1999) to estim

Canadian potential output. Because no code was publicly available at that time to perform

task, GAUSS programs were developed at the Bank of Canada. In fact, the code allows f

estimation of a wide variety of state-space models with or without ARCH errors.

This paper explains how to use this Bank code. We show, step-by-step, how to us

programs and give several examples. Also included is additional code for calculating o

sample forecast errors on the observable variables in order to assess the goodness of fi

estimated models.

JEL classification:  C32, C82, C87, C89

Bank classification: Econometric and statistical methods

Résumé

Les modèles espaces d'états servent depuis longtemps à expliquer l'évolution de diverses v

économiques. La raison en est surtout qu'ils renferment généralement plus d'information a

de l'économie qu'ils cherchent à décrire que d'autres modèles parcimonieux (les modèles V

exemple). Malgré leur attrait, leur utilisation était limitée jusqu'à tout récemment par la contr

voulant que la distribution des innovations obéisse à une loi normale conditionnelle. Il n'était

pas possible de modéliser des séries conditionnellement hétéroscédastiques dans un cadr

d'états. Dans un article publié en 1992, Harvey, Ruiz et Sentana ont levé cette contrainte.

montré comment le cadre espace d'états permet de tenir compte des effets ARCH, que

touchent les équations de mesure ou les équations de transition. Pour arriver à leurs fi
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auteurs ont modifié le filtre habituel de Kalman et mis au point un filtre approché (ou q

optimal) permettant d'estimer ces modèles.

Récemment, Kichian (1999) a appliqué le cadre en question à l'estimation de la produ

potentielle canadienne. Comme aucun programme adapté à cette tâche ne semblait dispon

programmes GAUSS nécessaires ont dû être élaborés à la Banque même. Les programm

permettent l'estimation d'un large éventail de modèles espaces d'états que ces derniers com

ou non des erreurs de type ARCH.

L'auteure explique, étape par étape, comment se servir des programmes et donne q

exemples. Un programme additionnel permet de calculer les erreurs de prévision hors écha

qui entachent les variables observables et d'évaluer par conséquent la qualité de l'ajus

statistique des modèles estimés.

Classification JEL:  C32, C82, C87, C89

Classification de la Banque: Méthodes économétriques et statistiques
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1. Introduction

The purpose of this paper is to explain the use of GAUSS programs developed at the Bank o

ada to estimate a state-space model with autoregressive conditional heteroskedastic (A

errors. The programs are based on the Harvey, Ruiz, and Sentana (1992) paper (hereafte

and are quite flexible. They allow the user to estimate a wide variety of models with or wit

ARCH errors, whether these errors are in the measurement equations or in the transition

tions.

Before HRS, latent variable models existing in the empirical literature always assume

error terms in the equations to be homoskedastic. But this presented a considerable modelli

itation if one believed that important information was embedded in the conditional volatilit

certain variables in the model. Thus, potentially important information was lost in a model

assumed conditionally homoskedastic errors. This was especially true if a series exhibite

sodes of low variance followed by episodes of high variance, in which case it is said to

ARCH errors.

In a recent paper, Harvey, Ruiz, and Sentana (1992) showed how ARCH effects cou

handled theoretically in a state-space model where the conditional heteroskedasticity was p

in either the measurement or the transition equation innovations. For the estimation, the a

proposed using an approximate (or a quasi-optimal) filter, which is a modification of the u

Kalman filter.

In economics, many financial and certain macroeconomic series exhibit thick-t

empirical distributions indicative of conditional heteroskedasticity, especially at high frequen

Accordingly, it is easy to see why applying the HRS methodology to latent variable models

include such series could be useful. However so far, to our knowledge, no computer cod

publicly available for carrying out such estimations.

A GAUSS code was therefore developed at the Bank of Canada to perform such es

tions.1 The code is general enough to allow the user to estimate state-space models with A

effects either in the measurement equation innovations or in the transition ones, or without A

effects. It can also accommodate moving-average errors in the observation equations. In ad

code is included for calculating both in-sample and out-of-sample forecast errors on the ob

ble variables.

1. The impetus to write these programs originally came from the need to estimate an unobser
components model with ARCH expectations for the explicit purposes of estimating Canadia
potential output and forecasting inflation (see Kichian [1999]).
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In Section 2, we present the HRS model and explain notations. In the following sec

we explain the code, indicating which parts to modify in order to set up a particular model. T

in Section 4, we provide two examples that walk the user through the programs. The last s

concludes.

2. The Harvey, Ruiz, and Sentana model

In this section, we describe the HRS model that is the one used, with only minor modificatio

our programs.

Consider the general model given by the following system of equations:

(2.1)

(2.2)

(2.3)

Here, is an vector of observed variables and is an vector of unobse

state variables.

Equation (1) denotes the set of measurement equations and links the observables

non-observables through the parameter matrix that is of dimension . It also includ

vector of observable exogenous variables of dimension with coefficients

addition, the equation contains a disturbance vector , of dimension , and which is di

uted normally with mean zero and variance .

Equation (2) describes the dynamics of the state vector and is therefore the set of tran

equations. The matrix is the matrix of coefficients on the lagged state variable

yt Zαt βXt Λεt εt
∗+ + += t 1 2 … nobs, , ,=

αt Tαt 1– δWt Ψηt ηt
∗+ + +=

εt ht εt⋅= εt NID 0 1,( )∼

ηt qt ηt⋅= ηt NID 0 1,( )∼

ht α0 αiεt i–
2

i 1=

qh

∑+=

qt γ0 γ iηt i–
2

i 1=

p

∑+=

yt n 1× αt M 1×

Z n M×
Xt k 1× n k× β

εt
∗ n 1×

Ht
∗

T M M×
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addition, a vector of exogenous observed variables of dimension is assumed to

the state variable vector via the coefficient matrix of dimension . A disturbance vector

of dimension , which is distributed normally with mean zero and variance , also en

the equation.

Equations (1) and (2) also each contain a vector of ARCH disturbances. In the case

measurement equations, these are collected in the vector and are assumed to influe

through the coefficient matrix . For the transition equations, the ARCH errors are in

vector and are assumed to influence the state vector via the matrix . The

ditional variances of  and  are given by  and  respectively and are of lag  and .

Finally, it is assumed that the different non-ARCH error terms in the model are indep

ently and identically distributed.

Note that, while the above model is based on HRS, there are nonetheless some differ

First, the parameter matrices are assumed to be constant while the matrices a

are set equal to identity. These assumptions are essentially made to reduce the paramete

and should not represent a very serious modelling limitation. Instead, we have generaliz

model in another direction by allowing for the presence of exogenous variables in the tran

equation. Second, our exogenous variables are allowed to vary across measurement and tr

equations, but unlike HRS, are identical within equations of the same category.

2.1  The quasi-optimal filter

For the Kalman filter to yield minimum mean-square estimates of the state variables, the dis

tion of conditional on information available at time is required to be normal. Howe

since the past values of the and disturbances are not directly observed, this may not

sarily be the case.

To address this issue, HRS suggest treating the distributions of conditional on

conditional on as though they were normal and obtaining the first two moments of t

errors using elements from the conditional mean and variance terms of the state variable

dently, in this case, the obtained estimates are not necessarily minimum mean square a

Kalman filter is then designated as being only quasi-optimal.

Wt s 1×
δ n s× ηt

∗

M 1× Qt
∗

n 1× εt yt

n n× Λ
M 1× ηt M M× Ψ

εt ηt ht qt qh p

Z T β δ, , , Λ Ψ

yt t 1–

εt ηt

εt εt 1–

ηt ηt 1–
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To use this modified filter, it is first necessary to re-write equations (2.1) and (2.2) o

model in their augmented form,2 as in HRS. Thus:

(2.4)

. (2.5)

In the augmented framework, the superscript denotes the augmented vector. He

ARCH disturbances are re-interpreted as state variables and collected in the vector . Th

turbance vector  now includes all the disturbances in the model except for .

Let the number of contemporaneous state variables in the system be . Note that

subset of —the total number of state variables in the system—and it is perfectly possible f

to include lagged state variables as well (as will be shown in the examples below).

The dimensions of the augmented matrices are the following: is , and

, is , and and are . is determined by , which is the number of s

variable lags in the model; by , which is the number of the ARCH lags in the measure

equation; and by , which is the number of ARCH lags in the transition equation. There

.

For example, for , and , we have that . Thus,

this case, and assuming , the transition equation is the following:

(2.6)

2. See HRS for more details.

yt Z
Aαt

A βXt εt
∗+ +=

αt
A

T
Aαt 1–

A δA
Wt G Ut⋅+ +=

A

αt
A

Ut εt
∗

m m

M αt

Z
A

n d× αt
A

Ut

d 1× δA
d s× T

A
G d d× d ν

qh

p

d mv nqh mp+ +=

qh 2= p 1= v 2= d 2m 2n m+ +=

s 1=

αt
A

αt

ηt

εt

εt 1–

≡

T 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

αt 1–

ηt 1–

εt 1–

εt 2–

⋅

δ
0

0

0

Wt

I mv Ψ 0 0

0 I M 0 0

0 0 I n 0

0 0 0 I n

ηt
∗

ηt

εt

εt 1–

⋅+⋅+=
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Once the augmented framework has been determined, the quasi-optimal filter c

applied. This is given by

(2.7)

where is the conditional mean of the augmented state vector, is its conditional

ariance matrix, and are the errors on the estimated conditional mean and variance

tions of the state variables respectively, is the variance-covariance matrix of the obse

measurement equation dependent variables, is the mean residual term and is the K

gain term. Finally, and are the updated conditional estimates of the state vector mea

its variance.

Thus, given starting values for the conditional mean of the state vector and its c

tional variance , the state residual terms and can be calculated. The respective

are then substituted in the measurement equations to obtain the variance-covariance matrix

well as the mean residual term . Now it is possible to calculate the Kalman gain term .

stituting the last three terms in the state-updating equations, it is possible to obtain and

At this point, the log likelihood function for that observation can be calculated. For the tim

observation, this function is given by

. (2.8)

In this fashion, the cycle repeats as above until all the observations are processe

product of the conditional distributions of the ’s constitutes the likelihood function tha

numerically maximized with respect to the parameters in the model.

εt
α

T
Aαt t 1–

A δA
Wt+=

εt
P

T
A
Pt t 1–

A
T

A′ G Et 1– UtUt′( ) G′⋅⋅+=

Bt Z
A εt

P
Z

A′⋅ ⋅ Ht
∗+=

εt
m

yt Z
Aαt

A
– βXt–=

Kt εt
P

Z
A′ Bt

1–⋅ ⋅=

αt t
A εt

α
Kt εt

m⋅+=

Pt t
A

I K t Z
A⋅–( ) εt

P⋅=

αt t 1–
A

Pt t 1–
A

εt
α εt

P

Bt

εt
m

Kt

αt t
A

Pt t
A

α1 0
A

P1 0
A ε1

α ε1
P

B1

ε1
m

K1

α1 1
A

P1 1
A

t

l f t
n
2
--- 2π( )

Btlog

2
----------------–

1
2
--- εt

m′ Bt
1– εt

m⋅ ⋅( )–log–=

yt
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3. Explanation of the GAUSS codes

A total of seven files comprise the necessary code. These files are

qo_fe.gau front-end program

qo_lf.gau filter and likelihood function

qo_st.gau returns estimates for mean and diag(variance) of state variables

qo_is.gau in-sample error for the measurement equation mean

qo_fp.gau out-of-sample prediction errors

qo_stT.gau returns estimates of state variables for the last observation

qo.lcg library of codes

Of these files, the user need be concerned only with the front-end program (but all

files should be in the same directory). The front-end program is the file where one loads the

assigns initial values, and specifies a particular model. In addition, those sections that sho

user-defined have upper case letter titles. Below are the explanations about this file.

The following sections are self-evident and will not be explained. These are the sec

entitled:

/* SPECIFY OUTPUT FILES */
/* LOADING DATA */
/* DATA TRANSFORMATIONS */
/* PRINTING OUT RESULTS */

The most important section is the one with the title: /* MODIFY THIS SECTION A

NEEDED */.

First, write the model being used in the comment section according to the system of

tions given by (2.1) to (2.3). This is the only framework needed for the front-end program s

user need not be concerned with the augmented structure of the model.

Next, designate the names of the individual parameters that will be estimated in the m

Change the names in_max_ParNames to reflect the designated names.

Now collect the data for the model in theswd matrix where the number of rows is the

number of observationsnobs, while the number of columns =n+k+s. The order of entry is as
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follows: start with the (observed)n dependent variables, next thek exogenous variables of the

measurement equations, followed by thes exogenous variables of the transition equations.

Next, enter the appropriate dimensions of the variables following the definitions of

symbols and dimensions in the program. These definitions are listed below for convenience

Definition of symbols (minimum required for program to run)

n = number of contemporaneous dependant variables (1)
m = number of contemporaneous state variables only (1)
k = number of exogenous variables in each measurement equation (1)
s = number of exogenous variables in each transition equation (1)
l = n (1)
q_h = number of lags in ARCH errors in each of l errors (2)
r = m (1)
p = number of lags in ARCH errors in each of r errors (2)
v = 1 + number of lags of the state variable with the longest lags (2)

To follow the above, count the number of contemporaneous state variables in the s

and designate this asm. Now single out the state variable with the longest number of lags and

v equal to this number plus one. Also setr equal tom even if the matrix has a dimension o

.

Notice the number in parentheses at the end of each of the above definitions. This n

designates the minimum number required for the program to run. Thus, for instance, the

mum number required for the number of lags in the ARCH errors is two. However, this doe

mean that one cannot turn off the ARCH effects, or that it is impossible to set up models wi

exogenous variables. The way to accomplish the last two objectives is to set these const

zero further down in the code when assigningbeta0 and parameter restrictions (this will be

explained in more detail in the parameter restrictions section). In the meantime, one must im

q_h=p=2 at minimum, and enter a column of ones for and for inswd (thereby setting

k=s=1) for the code to run.

Before discussing the initialization of the parameters of the model, that is,beta0, we

define two new matrices,TT andZZ , and explain their dimensions (note that these are not

augmented matrices  and ).

Knowing that there are contemporaneous state variables in the model being use

knowing , define the vector of dimension . This vector contains a state variable

of its lags, followed by another state variable with as many lags, and so on. Now, in ord

defineZZ  andTT, write down the system:

Ψ
M M×

Xt Wt

T
A

Z
A

m

v αt
∗ mvx1

v 1–
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(3.2)

The ZZ matrix is therefore of dimension , with each of its rows containing t

parameters that link the respective dependant variable to the present and lagged va

the state variables. From the second equation, define the block diagonal matrixTT of dimension

, each block of dimension . The first row of any block contains the parame

linking a contemporaneous state variable to of its lags. Finally, the and matrice

augmented to suit the dimensions of  but the user need not be concerned with these.

Having said this, we now move on to the initialization of the parametersbeta0 of the

model. Note that any parameters that are constrained should not be initialized. Therefore,

enter an initial value inbeta0 for those parameters that are constrained.

As mentioned in the description of the model, the matrix of coefficients for the exo

nous variables is of dimension . Enter initial values for by successive rows of

Similarly, enter the coefficients in the matrix row by row. These are followed by the

tial values first for , then for .

Next, enter the first rows of each of the blocks of theTT matrix successively. This is

followed by the initialization of theZZ matrix where parameters are entered, again row by r

Next come the and parameters.3 If either one of these matrices is zero, indicating no ARC

errors in that category of equations, enter nothing for the respective parameters in the init

tion vector. Similarly, if either of these matrices is identity, enter nothing for its parameters.

Finally, we come to the initialization of the ARCH parameters. Parameters for each o

measurement equations are entered first, row by row, followed by those of the transition

tions.

Following this is the section entitled /* ASSIGNING PRIORS FOR STATE VARIABLE

*/. For an idea about which priors to use in a particular model, we refer the reader to Ha

(1989).

3. In the code, the names corresponding to these two matrices arelambda andepsiand their dimen-
sions aren andm respectively.

yt ZZαt
∗ βXt Λεt εt

∗++ +=

αt
∗ TTαt 1–

∗ δ∗Wt Ψ∗ηt ηt
∗+ + +=

n mv×
v 1–

mv mv× v v×
v 1– δ Ψ

αt
∗

β
Xt n k× β 1 k×

M s× δ
Ht

∗ Qt
∗

v v×

Λ Ψ
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The section where parameter constraints are imposed is the one with the heading:

/* PROCEDURES -- MODIFY FROM beta TO archp ONLY, restrictions should be same ac

all procs */. Impose restrictions according to the model being used and to the parameter d

sions. These should be the same for all five procedures in the code.

In the next section, procedures are called in turn. Once terms, pterms, and the prio

assigned, the filter and maximum likelihood are applied. The output consists of the estim

parameters and their standard errors. Then proceduretemp2returns the “one-sided” estimated

state vector inesalphaas well as the diagonal of its variance-covariance matrix inesp. Procedure

temp4returns the measurement errors , i.e., in-sample prediction errors. Finally,temp5returns

the last value of the estimated state vector and its variance-covariance matrix. This is used

ceduretemp3 below in order to calculate out-of-sample prediction errors.

4. Examples

To demonstrate the flexibility and the limitations of our code, some simple examples are pro

in this section. We start with a basic model for the estimation of potential output with no ARC

moving-average error terms. The next example adds moving-average terms to the obse

equations of the model. Finally, we show how to add ARCH errors to the basic framework.

Before continuing, the reader is cautioned that care should be taken, as in any multiv

model, to ensure that the model used is well identified. If, during the estimation, one of the p

eters goes to zero, this is a sign that there are such problems in the model.

4.1  The basic model

Consider the following model:

(4.1)

where is the log of real GDP, is the log of potential output, and is the output gap. Po

tial is assumed to follow a random walk with drift while the gap is a stationary AR(1) proces

εt
m

yt yt
P

gt+=

yt
P µ yt 1–

P εt
y∗+ +=

gt φ1gt 1– ηt
g∗+=

πt πt 1– β0gt εt
π∗+ +=

yt yt
P

gt
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Phillips curve then links inflation to the gap via the parameter . Finally, we assume all

terms to be uncorrelated and to be normally and independently distributed.

Let us first simplify the model by substituting for its expression in the identity and

recalling that . The system becomes

. (4.2)

In this system, the observed dependent variables are and . Thus, setn=2. The

unobserved contemporaneous variable is so thatm=1 while M=2 since the lag of the gap also

enters one of the measurement equations.

In the first measurement equation, there is one exogenous variable, i.e., the const

Thus, we setk=1. There are no exogenous variables in the transition equation but we must ses=1

and enter a vector of constants inswd for this last variable because of the minimum requireme

There are no ARCH effects in the above model, yet we should still setq_h=p=2. Further down,

we will see how to turn off the ARCH effects. We also have thatl=2, r=1 and, since only one lag

of the only contemporaneous state variable is present in the measurement equations,v=1+1=2.

Thus the state-space framework is written

. (4.3)

Therefore, in the code, we have that

_max_ParNames={"mu", "var(y)","var(pi)","var(g)","phi1","beta0"};

swd = (100*(lrgdp-lrgdp_l1))~((ircpi-ircpi_l1)/4)~ones(nobs,1)~ones(nobs,1);

n=2; m=1; k=1; s=1; l=2; q_h=2; r=1; p=2; v=2;

β0

yt
P

yt 1–
P

yt 1– gt 1––=

∆yt µ gt gt 1–– εt
y∗+ +=

∆πt β0gt εt
π∗+=

gt φ1gt 1– ηt
g∗+=

∆yt ∆πt

gt

µ

∆πt

∆yt

β0 0

1 1–

gt

gt 1–

0

µ
1

εt
π∗

εt
y∗

+ +=

gt

gt 1–

φ1 0

1 0

gt 1–

gt 2–

ηt
g∗

0
+=
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For this example, the matrices , ZZ, and TT coincide with , Z, and T. Thus we have th

. (4.4)

The initializations of parameter values are carried out next. Thus,

beta0 =
@ beta1: 1xk @

0.1~ @ beta2: 1xk @ initializes the constant

@ delta1 1xs @

@ delta2 1xs @

0.3~0.5~ @ H*: 1xn @ initializes the  and

0.3~ @ Q*: 1xn @ initializes the

0.6~ @ TT1: 1xv @ initializes the

@ TT2: 1xv@

0.5 @ ZZ1 1xmv@ initializes the

@ ZZ2 1xmv@

Notice that, since there are no exogenous variables in the inflation equation and no A

effects present in either the measurement or the transition equations, there are no initializ

for these.

αt
∗ αt

αt
∗ gt

gt 1–

= ZZ
β0 0

1 1–
= TT

φ1 0

1 0
=

µ

εt
π∗ εt

y∗

ηt
g∗

φ1

β0
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Finally, the imposed constraints are:

beta= 0.0|th[1,1];  @ free parameter for the constant  @

delta = zeros(1,1); @ zero exog. variables imposed in transition equations @

Hstar = th[2:3,1]; @ free parameters for the  and  @

Qstar = th[4,1]; @ free parameter for  @

TT  = th[5,1]|0.0;  @ free parameter for  @

ZZ  = th[6,1]|0.0 |1.0|-1.0 ;  @ free parameter for  and constraints for the gap term

lambda = 1.0|1.0; @ impose 1.0 for each of the dependent variables@

epsi   = 1.0; @ impose 1.0 for each of the contemp. state variables @

archq = zeros(3,1) |zeros(3,1); @ impose no ARCH effects in the measurement eqn

archp = zeros(3,1); @ impose no ARCH effects in the state eqns. @

At this point, the model can be run through the filter and the likelihood procedures. If the use

wants to calculate the mean-square errors of forecasts, then one should remember to reser

data at the end of the sample for this purpose and set the forecast sample duration in the

entitled, /* CALCULATING OUT-OF-SAMPLE FORECAST ERRORS */.

4.2 The Gerlach and Smets model:4 Base model with moving-average errors

Now, supposing we want to refine the model by allowing one of the measurement err

have a moving-average process with three lags. Similarly, we would like to impose an A

process for the gap instead of the AR(1). We also want to let the gap term enter contemp

ously as well as with a lag in the inflation equation. Finally, we prefer to make the constant i

output equation time varying (a unit root process, to be more precise). To complete the chan

the basic model, we add a constant and exogenous variables to the inflation equation.

4. See Kichian (1999).

µ

εt
π∗ εt

y∗

ηt
g∗

φ1

β0
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In this case, the model becomes

. (4.5)

Once again, assuming that , the model can be re-written in its m

compact form as

. (4.6)

To integrate the MA(3) term in the system, simply interpret as a state variable. Do

same for the time-varying constant . Thus, in this new system, the observed dependent

bles are still the same but nowm=3. Since the moving-average term is a state variable and of

3, we must setv=1+3=4.We also point out the presence of exogenous variables and their

lags in this system. (Note that, by contrast, there are two lags of each variable “dpoil” and “d

the code. They are not included here in order to save space.)

yt yt
P

gt+=

yt
P µt y+ t 1–

P εt
y∗+=

µt µt 1– ηt
µ∗+=

gt ϕ1gt 1– ϕ2gt 2– ηt
g∗+ +=

∆πt c β0gt β1gt 1– γ L( )ωt θ L( )εt
π∗+ + + +=

yt 1–
P

yt 1– gt 1––=

∆yt µt gt g–+ t 1– εt
y∗+=

µt µt 1– ηt
µ∗+=

gt ϕ1gt 1– ϕ2gt 2– ηt
g∗+ +=

∆πt c β0gt β1gt 1– γ L( )ωt θ L( )εt
π∗+ + + +=

εt
π∗

µt

ωt
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In this case, the state-space representation is given by

(4.7)

(4.8)

∆πt

∆yt

1 θ1 θ2 θ3 β0 0 0 0 0

0 0 0 0 1 1– 0 1 0

εt
π

εt 1–
π

εt 2–
π

εt 3–
π

gt

gt 1–

gt 2–

µt

µt 1–

c γ1 γ2 γ3 γ4

0 0 0 0 0

1

ω1t

ω1t 1–

ω2t

ω2t 1–

0

εt
y∗+ +=

εt
π

εt 1–
π

εt 2–
π

εt 3–
π

gt

gt 1–

gt 2–

µt

µt 1–

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 ϕ1 ϕ2 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

εt 1–
π

εt 2–
π

εt 3–
π

εt 4–
π

gt 1–

gt 2–

gt 3–

µt 1–

µt 2–

ηt
π∗

0

0

0

ηt
g∗

0

0

ηt
µ∗

0

+=
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while the (3.1) equivalent of the  state-space representation looks like this:

(4.9)

so that, in the above,  and,

 . (4.10)

αt
∗

∆πt

∆yt

1 θ1 θ2 θ3 β0 0 0 0 0 0 0 0

0 0 0 0 1 1– 0 0 1 0 0 0

εt
π

εt 1–
π

εt 2–
π

εt 3–
π

gt

gt 1–

gt 2–

gt 3–

µt

µt 1–

µt 2–

µt 3–

c γ1 γ2 γ3 γ4

0 0 0 0 0

1

ω1t

ω1t 1–

ω2t

ω2t 1–

c

0
1+ +=

0

εt
y∗+

ZZ
1 θ1 θ2 θ3 β0 0 0 0 0 0 0 0

0 0 0 0 1 1– 0 0 1 0 0 0
=

TT

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 ϕ1 ϕ2 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

=
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The corresponding writing in the code (with two lags for each of the exogenous varia

instead of one lag shown in the model here) is as follows:

_max_ParNames= ”const","dpoil","dpoil-l1","dpoil-l2","de”,"de-l1","de-l2","h2star",
"q1star","q2star","q3star",”phi1","phi2","del1","del2","del3","gap",
"gap-l1"};

swd= ((ircpi-ircpi_l1)/4)~(100*(lrgdp-lrgdp_l1))~ones(nobs,1)
~drpoil~drpoil_l1~drpoil_l2~de~de_l1~de_l2~ones(nobs,1);

n=2; m=3; k=7; s=1; l=2; q_h=2; r=3; p=2; v=4;

The initialization of parameter values are carried out next. Thus,

beta0 =
-0.008~0.83~0.73~-0.39~2.32~3.28~-4.15~ @ beta1: 1xk

@beta2: 1xk @
@ delta1 1xs @
@ delta2 1xs @
@ delta3 1xs @

0.7~ @ H*: 1xn @
0.45~0.46~0.06~ @ Q*: 1xm @

@ T1:1xv (1st row of 1st(vxv) diag block in TT) @
1.52~-0.59~ @ T2 : 1xv (1st row of 2nd(vxv) diag block in TT) @

@ T3:1xv (1st row of 3rd(vxv) diag block in TT) @
-0.57~-0.09~-0.02~0.16~-0.14; @ Z1:1xmv @

@ Z2:1xmv @
@ lmda:nxl @
@ psi:mxr @
@ alph1: qqx1 @
@ alph2: qqx1 @
@ alph3: qqx1 @
@ gamm1:ppx1 @
@ gamm2:ppx1 @
@ gamm3:ppx1 @

Once again, since there are no ARCH effects present in either the measurement or the tra

equations, there are no initializations for these.
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Finally, the imposed constraints are:

beta= th[1:7,1]|zeros(7,1);
delta = zeros(3,1);
Hstar = 0.0|th[8,1];
Qstar = th[9,1]|th[10,1]|th[11,1];
TT  = zeros(4,1)   |th[12:13,1]|0.0|0.0   |1.0|zeros(3,1);
ZZ  = 1.0|th[14:16,1] |th[17:18,1]|zeros(2,1) |zeros(4,1)

|zeros(4,1) |1.0|(-1.0)|0.0|0.0 |1.0|zeros(3,1);
lambda = 1.0|1.0;
epsi   = 1.0|1.0|1.0;
archq = zeros(3,1) |zeros(3,1);
archp = zeros(3,1) |zeros(3,1)|zeros(3,1);

4.3 The basic model with ARCH errors

In this section, we explain how ARCH errors can be integrated in one of the transition equa

For this purpose, we present another version of the basic model found in example 4.1:

. (4.11)

In this model, there are two latent variables, and . The first is the output gap w

the second is the inflation expectations term. We assume that current expectations depend

own values and that the error term follows an ARCH(3) process. For the gap variable, we a

a stationary AR(2) process with normal i.i.d.errors. The state-space framework looks like th

∆yt µ gt gt 1–– εt
y∗+ +=

πt πt
e β+ 0gt β1gt 1– εt

π∗+ +=

gt φ1gt 1– φ2gt 2– ηt
g∗+ +=

πt
e θ1πt 1–

e θ2πt 2–
e ηt

e
+ +=

ηt
e

N 0 q2t,( )∼

q2t γ0 γ i ηt i–
e( )

2

i 1=

P

∑+=

gt πt
e
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. (4.12)

Notice that the error term corresponding to the expected inflation term is set equal to

in the matrix. Instead, it is set to follow an ARCH(3) in the parameter restriction sectio

follows:

_max_ParNames={"mu", "var(y)","var(pi)","var(g)",“phi1","phi2","theta1","theta2",
"beta0","beta1", "gamma10","gamma11","gamma12","gamma13"};

swd= (100*(lrgdp-lrgdp_l1))~(ircpi/4)~ones(nobs,1)~ones(nobs,1);

n=2; m=2; k=1; s=1; l=2; q_h=2; r=2; p=3; v=3;

and the restrictions imposed on the parameters are given by:

beta = th[1,1]|0.0;
delta = zeros(2,1);
Hstar = th[2:3,1];
Qstar = th[4,1]|0.0;
TT  = th[5:6,1]|0.0  |th[7:8,1]|0.0;
ZZ  = 1.0|-1.0|zeros(4,1) |th[9:10,1]|0.0|1.0|zeros(2,1);
lambda = 1.0|1.0;
epsi   = 1.0|1.0;

∆yt

πt

1 1– 0 0 0 0

β0 β1 0 1 0 0

gt

gt 1–

gt 2–

πt
e

πt 1–
e

πt 2–
e

µ
0

1
εt

y∗

εt
π∗

+ +=

gt

gt 1–

gt 2–

πt
e

πt 1–
e

πt 2–
e

φ1 φ2 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 θ1 θ2 0

0 0 0 1 0 0

0 0 0 0 1 0

gt 1–

gt 2–

gt 3–

πt 1–
e

πt 2–
e

πt 3–
e

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0
0

0

ηt
e

0

0

ηt
g∗

0

0

0
0

0

+ +=

q2t γ0 γ i ηt i–
e( )

2

i 1=

P

∑+=

ηt
∗
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archq = zeros(3,1) |zeros(3,1);
archp = zeros(4,1) |th[11:14,1]; @ free parameters for ARCH(3) in 2nd state

variable @

5. Conclusions

In this paper, we show, step-by-step and with examples, how to use the GAUSS codes dev

at the Bank to estimate state-space models with and without ARCH errors. The ARCH erro

be present in either the measurement or the transition equations of the model.

With the code for the one-sided estimates in place, the next step is to extend the pro

to account for the possibility of obtaining smoothed estimates. In addition, it would be usef

include various diagnostic tests to assess the model’s goodness of fit. Finally, another po

extension to the existing code is allowing for parameter variability over time. These issues a

for future versions.



20

imeo.

RCH

nada

ticity:

c

arch
References

Gerlach, S. and F. Smets. 1997. “Output Gaps and Inflation.” Bank for International Settlements. M

———. 1999. “Output gaps and monetary policy in the EMU area.”European Economic Review 43:
801–812.

Harvey, A. C. 1989.Forecasting, Structural Time Series Models and the Kalman Filter.Cambridge:
Cambridge University Press.

Harvey, A. C., E. Ruiz, and E. Sentana. 1992. “Unobserved Component Time Series Models with A
Disturbances.”Journal of Econometrics 52: 129–157.

Kichian, M. 1999. “Measuring Potential Output within a State-Space Framework.” Bank of Ca
Working Paper No. 99-9.

Kim, C-J. 1993. “Unobserved-Component Time Series Models with Markov-Switching Heteroscedas
Changes in Regime and the Link between Inflation Rates and Inflation Uncertainty.”Journal of
Business and Economic Statistics 11: 341–349.

Kuttner, K. N. 1994. “Estimating Potential Output as a Latent Variable.”Journal of Business and Economi
Statistics 12: 361–368.

St-Amant, P. and S. van Norden. 1997.Measurement of the Output Gap: A Discussion of Recent Rese
at the Bank of Canada. Technical Report No. 79. Ottawa: Bank of Canada.



Bank of Canada Working Papers
Documents de travail de la Banque du Canada

Working papers are generally published in the language of the author, with an abstract in both official lan-
guages.Les documents de travail sont publiés généralement dans la langue utilisée par les auteurs; ils sont
cependant précédés d’un résumé bilingue.

2000
2000-1 The Employment Costs of Downward Nominal-Wage Rigidity J. Farès and S. Hogan

1999
99-20 The Expectations Hypothesis for the Longer End of the Term Structure:

Some Evidence for Canada R. Lange

99-19 Pricing Interest Rate Derivatives in a Non-Parametric
Two-Factor Term-Structure Model J. Knight, F. Li, and M. Yuan

99-18 Estimating One-Factor Models of Short-Term Interest Rates D. Mc Manus and D. Watt

99-17 Canada’s Exchange Rate Regime and North American Econo-
mic Integration: The Role of Risk-Sharing Mechanisms Z. Antia, R. Djoudad, and P. St-Amant

99-16 Optimal Currency Areas: A Review of the Recent Literature R. Lafrance and P. St-Amant

99-15 The Information Content of Interest Rate Futures Options D. Mc Manus

99-14 The U.S. Capacity Utilization Rate: A New Estimation Approach R. Lalonde

99-13 Indicator Models of Core Inflation for Canada R. Dion

99-12 Why Canada Needs a Flexible Exchange Rate J. Murray

99-11 Liquidity of the Government of Canada Securities Market: Stylized Facts
and Some Market Microstructure Comparisons to the United States T. Gravelle

99-10 Real Effects of Collapsing Exchange Rate Regimes:
An Application to Mexico P. Osakwe and L. Schembri

99-9 Measuring Potential Output within a State-Space Framework M. Kichian

99-8 Monetary Rules When Economic Behaviour Changes R. Amano, D. Coletti, and T. Macklem

99-7 The Exchange Rate Regime and Canada’s Monetary Order D. Laidler

99-6 Uncovering Inflation Expectations and Risk Premiums
from Internationally Integrated Financial Markets B.S.C. Fung, S. Mitnick, and E. Remolona

99-5 The Quantity of Money and Monetary Policy D. Laidler

99-4 An Intraday Analysis of the Effectiveness of Foreign Exchange
Intervention N. Beattie and J-F. Fillion

99-3 Forecasting GDP Growth Using Artificial Neural Networks G. Tkacz and S. Hu

99-2 Capital Gains and Inflation Taxes in a Life-cycle Model C. Leung and G.-J. Zhang

Copies and a complete list of working papers are available from:
Pour obtenir des exemplaires et une liste complète des documents de travail, prière de s’adresser à:

Publications Distribution, Bank of Canada Diffusion des publications, Banque du Canada
234 Wellington Street Ottawa, Ontario  K1A 0G9 234, rue Wellington, Ottawa (Ontario) K1A 0G9

E-mail / Adresse électronique: publications@bank-banque-canada.ca
WWW: http://www.bank-banque-canada.ca/


	Title page
	Contents
	Abstract/Résumé
	1. Introduction
	2. The Harvey, Ruiz, and Sentana model
	2.1 The quasi-optimal filter
	3. Explanation of the GAUSS codes
	4. Examples
	4.1 The basic model
	4.2 The Gerlach and Smets model
	4.3 The basic model with ARCH errors
	5. Conclusions
	References

