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Abstract

State-space models have long been popular in explaining the evolution of various economic
variables. This is mainly because they generally have more economic content than do others in
their class of parsimonious models (for example, VARS). Yet, in spite of their advantages, use of
these models until recently was limited by the assumption that all the innovations therein had to
be conditionally normally distributed. Consequently, one could not model conditionally
heteroskedastic series within that framework. The study by Harvey, Ruiz, and Sentana (1992)
changed that. These authors showed how ARCH effects could be handled in a state-space
framework, whether such innovations were in the measurement equations or in the transition
ones. For these purposes, the authors modified the usual Kalman filter and developed an
approximate (or quasi-optimal) filter to estimate these models.

An application of the above framework was made recently by Kichian (1999) to estimate
Canadian potential output. Because no code was publicly available at that time to perform this
task, GAUSS programs were developed at the Bank of Canada. In fact, the code allows for the
estimation of a wide variety of state-space models with or without ARCH errors.

This paper explains how to use this Bank code. We show, step-by-step, how to use the
programs and give several examples. Also included is additional code for calculating out-of-
sample forecast errors on the observable variables in order to assess the goodness of fit of the
estimated models.

JEL classification: C32, C82, C87, C89
Bank classification: Econometric and statistical methods

Résumé

Les modeles espaces d'états servent depuis longtemps a expliquer I'évolution de diverses variables
économiques. La raison en est surtout qu'ils renferment généralement plus d'information au sujet
de I'économie qu'ils cherchent a décrire que d'autres modéles parcimonieux (les modéles VAR par
exemple). Malgré leur attrait, leur utilisation était limitée jusqu'a tout récemment par la contrainte
voulant que la distribution des innovations obéisse a une loi normale conditionnelle. Il n'était donc
pas possible de modéliser des séries conditionnellement hétéroscédastiques dans un cadre espace
d'états. Dans un article publié en 1992, Harvey, Ruiz et Sentana ont levé cette contrainte. Ils ont
montré comment le cadre espace d'états permet de tenir compte des effets ARCH, que ceux-ci
touchent les équations de mesure ou les équations de transition. Pour arriver a leurs fins, les
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auteurs ont modifié le filtre habituel de Kalman et mis au point un filtre approché (ou quasi-
optimal) permettant d'estimer ces modeéles.

Récemment, Kichian (1999) a appliqué le cadre en question a I'estimation de la production
potentielle canadienne. Comme aucun programme adapté a cette tache ne semblait disponible, les
programmes GAUSS nécessaires ont di étre élaborés a la Banque méme. Les programmes créés
permettent |I'estimation d'un large éventail de modéles espaces d'états que ces derniers comportent
ou non des erreurs de type ARCH.

L'auteure explique, étape par étape, comment se servir des programmes et donne quelques
exemples. Un programme additionnel permet de calculer les erreurs de prévision hors échantillon
qui entachent les variables observables et d'évaluer par conséquent la qualité de l'ajustement
statistique des modeles estimés.

Classification JEL: C32, C82, C87, C89
Classification de la Banque: Méthodes économétriques et statistiques



1. Introduction

The purpose of this paper is to explain the use of GAUSS programs developed at the Bank of Can-
ada to estimate a state-space model with autoregressive conditional heteroskedastic (ARCH)
errors. The programs are based on the Harvey, Ruiz, and Sentana (1992) paper (hereafter HRS)
and are quite flexible. They allow the user to estimate a wide variety of models with or without
ARCH errors, whether these errors are in the measurement equations or in the transition equa-
tions.

Before HRS, latent variable models existing in the empirical literature always assumed the
error terms in the equations to be homoskedastic. But this presented a considerable modelling lim-
itation if one believed that important information was embedded in the conditional volatility of
certain variables in the model. Thus, potentially important information was lost in a model that
assumed conditionally homoskedastic errors. This was especially true if a series exhibited epi-
sodes of low variance followed by episodes of high variance, in which case it is said to have
ARCH errors.

In a recent paper, Harvey, Ruiz, and Sentana (1992) showed how ARCH effects could be
handled theoretically in a state-space model where the conditional heteroskedasticity was present
in either the measurement or the transition equation innovations. For the estimation, the authors
proposed using an approximate (or a quasi-optimal) filter, which is a modification of the usual
Kalman filter.

In economics, many financial and certain macroeconomic series exhibit thick-tailed
empirical distributions indicative of conditional heteroskedasticity, especially at high frequencies.
Accordingly, it is easy to see why applying the HRS methodology to latent variable models that
include such series could be useful. However so far, to our knowledge, no computer code was
publicly available for carrying out such estimations.

A GAUSS code was therefore developed at the Bank of Canada to perform such estima-
tions! The code is general enough to allow the user to estimate state-space models with ARCH
effects either in the measurement equation innovations or in the transition ones, or without ARCH
effects. It can also accommodate moving-average errors in the observation equations. In addition,
code is included for calculating both in-sample and out-of-sample forecast errors on the observa-
ble variables.

1. The impetus to write these programs originally came from the need to estimate an unobserved
components model with ARCH expectations for the explicit purposes of estimating Canadian
potential output and forecasting inflation (see Kichian [1999]).



In Section 2, we present the HRS model and explain notations. In the following section,
we explain the code, indicating which parts to modify in order to set up a particular model. Then
in Section 4, we provide two examples that walk the user through the programs. The last section
concludes.

2. The Harvey, Ruiz, and Sentana model

In this section, we describe the HRS model that is the one used, with only minor modifications, in
our programs.

Consider the general model given by the following system of equations:

Y, = Zo,+BX, +Ag, +g U t=12..,nobs (2.1)

a, = Ta,_; +dW, +W¥n, +nU (2.2)

g = Jn & g, ONID(O, 1)
ne = /o 0y n, ONID(O, 1)

On
h =dag+ ael_ (2.3)
i=1
.
G = Yo+ ) YiNt-i
i=1
Here,y, isamx 1 vector of observed variables and  id/br 1 vector of unobserved

state variables.

Equation (1) denotes the set of measurement equations and links the observables to the

non-observables through the parameter mafrix  that is of dimensioivi . It also includes a
vector of observable exogenous variabks  of dimeniernl withk coefficients . In
addition, the equation contains a disturbance vegfdr  , of dimemsioh , and which is distrib-

uted normally with mean zero and variartg!

Equation (2) describes the dynamics of the state vector and is therefore the set of transition
equations. The matrid is th&1x M matrix of coefficients on the lagged state variables. In



addition, a vector of exogenous observed variablgs of dimerssioh is assumed to affect
the state variable vector via the coefficient malix  of dimensions . A disturbance vgétor

of dimensionM x 1 , which is distributed normally with mean zero and variag¢é , also enters
the equation.

Equations (1) and (2) also each contain a vector of ARCH disturbances. In the case of the
measurement equations, these are collected in thé vgctor  and are assumed to igfluence
through then x n coefficient matrid . For the transition equations, the ARCH errors are in the
M x 1 vectorn, and are assumed to influence the state vector visl thév rdatrix . The con-
ditional variances of, ang, aregivenhy apd respectively and are gf lag p and

Finally, it is assumed that the different non-ARCH error terms in the model are independ-
ently and identically distributed.

Note that, while the above model is based on HRS, there are nonetheless some differences.
First, the parameter matrices T,[3,d  are assumed to be constant while the maAtrices¥ and
are set equal to identity. These assumptions are essentially made to reduce the parameter space
and should not represent a very serious modelling limitation. Instead, we have generalized the
model in another direction by allowing for the presence of exogenous variables in the transition
equation. Second, our exogenous variables are allowed to vary across measurement and transition
equations, but unlike HRS, are identical within equations of the same category.

2.1  The quasi-optimal filter

For the Kalman filter to yield minimum mean-square estimates of the state variables, the distribu-
tion of y, conditional on information available at tinte-1  is required to be normal. However,
since the past values of tig  ang  disturbances are not directly observed, this may not neces-
sarily be the case.

To address this issue, HRS suggest treating the distributiogys of  conditioaal pn and
n, conditional onn,_; as though they were normal and obtaining the first two moments of these
errors using elements from the conditional mean and variance terms of the state variables. Evi-
dently, in this case, the obtained estimates are not necessarily minimum mean square and the
Kalman filter is then designated as being only quasi-optimal.



To use this modified filter, it is first necessary to re-write equations (2.1) and (2.2) of the
model in their augmented forfras in HRS. Thus:

y, = 2%+ BX, +¢0 (2.4)

al = Thal  +3"W, +G U, (2.5)

In the augmented framework, the superscApt  denotes the augmented vector. Here, the
ARCH disturbances are re-interpreted as state variables and collected in thea4Aector . The dis-
turbance vectot), now includes all the disturbances in the model except!for

Let the number of contemporaneous state variables in the system be . Note that isa
subset oM —the total number of state variables in the system—and it is perfectly possib|e for
to include lagged state variables as well (as will be shown in the examples below).

The dimensions of the augmented matrices are the folloviig: n xisl O(tA , Uand are
dx1, 5" is d x S, andT” ands arelxd d is determined by , which is the number of state
variable lags in the model; by, , which is the number of the ARCH lags in the measurement
equation; and byp , which is the number of ARCH lags in the transition equation. Therefore,

d = mv+ ng +mp.

For example, forg, = 2 p =1 and¢ = 2 ,we have thdt= 2m+2n+m . Thus,in
this case, and assumisg= 1 , the transition equation is the following:

a, T00 a;_q 5 lw W 00 N~

oh=| M| =]0000 N1l 10y, 0 Iy 00 4ny (2.6)
& 000 € _1 0 0O 01,0 &
&4 0000 fg ,| 1O (0 0 01y |g_

2. See HRS for more details.



Once the augmented framework has been determined, the quasi-optimal filter can be
applied. This is given by

g’ = TAO({A“_1+E'>AWt
P_ _ALA A g
e = TAP{,_ T + G (E,_,(UU) (G

B, = z'x," ™ +H,0

m

g = y,—Z ol - BX, 2.7)

K, =g m"m™*

A _ _a m
Ay = & + K LE

A A P
Poe = (1 -K, 2" &,

whereO(tA‘t_1 is the conditional mean of the augmented state vd%@cp[,l is its conditional cov-
ariance matrixg,” an(}ttP are the errors on the estimated conditional mean and variance equa-
tions of the state variables respectivef,  is the variance-covariance matrix of the observable
measurement equation dependent variabjfar%, is the mean residual teKn and is the Kalman
gain term. FinaIIy,O(tA‘t andPtA‘t are the updated conditional estimates of the state vector mean and
its variance.

Thus, given starting values for the conditional mean of the state vecﬁgr and its condi-
tional varianceP'f‘o , the state residual term$ a@F()JI can be calculated. The respective terms
are then substituted in the measurement equations to obtain the variance-covariancmatrix  as
well as the mean residual terej . Now it is possible to calculate the Kalman gairkierm . Sub-
stituting the last three terms in the state-updating equations, it is possible to oﬁtgin PlA‘ and
At this point, the log likelihood function for that observation can be calculated. For thettime
observation, this function is given by

n log|By| 1, m, 1
If, = —élog(Zn)—%—é(stm B, [&). (2.8)

In this fashion, the cycle repeats as above until all the observations are processed. The
product of the conditional distributions of thg s constitutes the likelihood function that is

numerically maximized with respect to the parameters in the model.



3. Explanation of the GAUSS codes

A total of seven files comprise the necessary code. These files are
go_fe.gau front-end program
go_lf.gau filter and likelihood function
go_st.gau returns estimates for mean and diag(variance) of state variables
go_is.gau in-sample error for the measurement equation mean
go_fp.gau out-of-sample prediction errors
go_stT.gau returns estimates of state variables for the last observation
go.lcg library of codes

Of these files, the user need be concerned only with the front-end program (but all seven
files should be in the same directory). The front-end program is the file where one loads the data,
assigns initial values, and specifies a particular model. In addition, those sections that should be
user-defined have upper case letter titles. Below are the explanations about this file.

The following sections are self-evident and will not be explained. These are the sections
entitled:

I* SPECIFY OUTPUT FILES */

I* LOADING DATA */

I* DATA TRANSFORMATIONS */
/* PRINTING OUT RESULTS */

The most important section is the one with the title: /* MODIFY THIS SECTION AS
NEEDED */.

First, write the model being used in the comment section according to the system of equa-
tions given by (2.1) to (2.3). This is the only framework needed for the front-end program so the
user need not be concerned with the augmented structure of the model.

Next, designate the names of the individual parameters that will be estimated in the model.
Change the names imax_ParNamedo reflect the designated names.

Now collect the data for the model in trsevd matrix where the number of rows is the
number of observationsobs, while the number of columns a+k+s. The order of entry is as



follows: start with the (observed) dependent variables, next tkeexogenous variables of the
measurement equations, followed by stexogenous variables of the transition equations.

Next, enter the appropriate dimensions of the variables following the definitions of the
symbols and dimensions in the program. These definitions are listed below for convenience.

Definition of symbols (minimum required for program to run)

number of contemporaneous dependant variables (1)

number of contemporaneous state variables only (1)

number of exogenous variables in each measurement equation (1)
number of exogenous variables in each transition equation (1)

n (1)

number of lags in ARCH errors in each of | errors (2)

m (1)

number of lags in ARCH errors in each of r errors (2)

1 + number of lags of the state variable with the longest lags (2)

35

<U“ILD_U)7\_
>

To follow the above, count the number of contemporaneous state variables in the system
and designate this as. Now single out the state variable with the longest number of lags and let
v equal to this number plus one. Also setqual tom even if the matrix¥ has a dimension of
MxM.

Notice the number in parentheses at the end of each of the above definitions. This number
designates the minimum number required for the program to run. Thus, for instance, the mini-
mum number required for the number of lags in the ARCH errors is two. However, this does not
mean that one cannot turn off the ARCH effects, or that it is impossible to set up models with no
exogenous variables. The way to accomplish the last two objectives is to set these constants to
zero further down in the code when assigningtaO and parameter restrictions (this will be
explained in more detail in the parameter restrictions section). In the meantime, one must impose
g_h=p=2 at minimum, and enter a column of ones &y and Yoy  swd (thereby setting
k=s=1) for the code to run.

Before discussing the initialization of the parameters of the model, théeta0 we
define two new matrice§,T andZZ, and explain their dimensions (note that these are not the
ices”  amf
augmented matriceb a ).

Knowing that there aren contemporaneous state variables in the model being used and
knowing v , define the vectom,l]  of dimensionvxl . This vector contains a state variable and
v—1 of its lags, followed by another state variable with as many lags, and so on. Now, in order to
defineZZ andTT, write down the system:



Y, = ZZa, O+ BX, + Ag, + g0 (3.1)
o, = TTa,_,U+ 30w, + Whh, +n U (3.2)

The ZZ matrix is therefore of dimension x mv , with each of its rows containing the
parameters that link the respective dependant variable to the presentdnd lagged values of
the state variables. From the second equation, define the block diagonal Wawixdimension
mvx mv, each block of dimension x v . The first row of any block contains the parameters
linking a contemporaneous state variablevte 1 of its lags. Finallydthe Yand  matrices are
augmented to suit the dimensionsogf!  but the user need not be concerned with these.

Having said this, we now move on to the initialization of the paramdtetaO of the
model. Note that any parameters that are constrained should not be initialized. Therefore, do not
enter an initial value ibetaOfor those parameters that are constrained.

As mentioned in the description of the model, the matrix of coeffici@nts  for the exoge-
nous variablesX; is of dimensiamx k . Enter initial values for by successive rodis<df
Similarly, enter theM x s coefficients in the mat@® row by row. These are followed by the ini-
tial values first foH,1) , then fo@,U

Next, enter the first rows of each of thiex v blocks of Tle matrix successively. This is
followed by the initialization of th&ZZ matrix where parameters are entered, again row by row.
Next come the\ an&V parameté”rtf.either one of these matrices is zero, indicating no ARCH
errors in that category of equations, enter nothing for the respective parameters in the initializa-
tion vector. Similarly, if either of these matrices is identity, enter nothing for its parameters.

Finally, we come to the initialization of the ARCH parameters. Parameters for each of the
measurement equations are entered first, row by row, followed by those of the transition equa-
tions.

Following this is the section entitled /* ASSIGNING PRIORS FOR STATE VARIABLES
*/. For an idea about which priors to use in a particular model, we refer the reader to Harvey
(1989).

3. Inthe code, the names corresponding to these two matricésnalnea andepsiand their dimen-
sions aren andm respectively.



The section where parameter constraints are imposed is the one with the heading:
/* PROCEDURES -- MODIFY FROM beta TO archp ONLY, restrictions should be same across
all procs */. Impose restrictions according to the model being used and to the parameter dimen-
sions. These should be the same for all five procedures in the code.

In the next section, procedures are called in turn. Once terms, pterms, and the priors are
assigned, the filter and maximum likelihood are applied. The output consists of the estimated
parameters and their standard errors. Then procedung2returns the “one-sided” estimated
state vector iresalphaas well as the diagonal of its variance-covariance matresim Procedure
tempdreturns the measurement errczigré1 , 1.e., in-sample prediction errors. Fiaallysreturns
the last value of the estimated state vector and its variance-covariance matrix. This is used in pro-
ceduretemp3below in order to calculate out-of-sample prediction errors.

4. Examples

To demonstrate the flexibility and the limitations of our code, some simple examples are provided
in this section. We start with a basic model for the estimation of potential output with no ARCH or
moving-average error terms. The next example adds moving-average terms to the observable
equations of the model. Finally, we show how to add ARCH errors to the basic framework.

Before continuing, the reader is cautioned that care should be taken, as in any multivariate
model, to ensure that the model used is well identified. If, during the estimation, one of the param-
eters goes to zero, this is a sign that there are such problems in the model.

4.1 The basic model

Consider the following model:

P
Yi = Y TG
P |
Ve = H+Yp g+
(4.1)
gl

wherey, is the log of real GDI:y,tP is the log of potential output, gpd  is the output gap. Poten-
tial is assumed to follow a random walk with drift while the gap is a stationary AR(1) process. A
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Phillips curve then links inflation to the gap via the paramgigr . Finally, we assume all error
terms to be uncorrelated and to be normally and independently distributed.

Let us first simplify the model by substitutirggp for its expression in the identity and by
recalling thatytp_1 = ¥;_1—0_1 - The system becomes

N
Ay, = P+G—G_y &
AT[t = Bogt + g?D . (4.2)
gl

In this system, the observed dependent variableshgre  Aamd . ThussZe€the
unobserved contemporaneous variablg;is  sorti¥t while M=2 since the lag of the gap also
enters one of the measurement equations.

In the first measurement equation, there is one exogenous variable, i.e., the cpnstant
Thus, we sek=1. There are no exogenous variables in the transition equation but we mastlset
and enter a vector of constantsswd for this last variable because of the minimum requirement.
There are no ARCH effects in the above model, yet we should stitj setp=2 Further down,
we will see how to turn off the ARCH effects. We also have t&&t r=1 and, since only one lag
of the only contemporaneous state variable is present in the measurement eytidins?

Thus the state-space framework is written

AT 0 g
W:{Bo } 9 +mm+ t
Ayt_ 1 -1 gt_l 8%/
9 | {(Plﬂ 9 -1/ , In{

9i-1 10|92 0

Therefore, in the code, we have that

(4.3)

_max_ParNames{"'mu", "var(y)","var(pi)","var(g)","phil","beta0"};
swd = (100*(Irgdp-Irgdp_11))~((ircpi-ircpi_I1)/4)~ones(nobs,1)~ones(nobs,1);

n=2; m=1; k=1, s=1, I=2; q_h=2; r=1; p=2; v=2,;
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For this example, the matrices”] , ZZ, and TT coincide wjth , Z, and T. Thus we have that

ad= [gt] 77 = {BO 0} TT = [‘Plo] (4.4)
Oi_1 1-1 10

The initializations of parameter values are carried out next. Thus,

betal =
@ betal: 1xk @
0.1~ @ beta2: 1xk @ initializes the constant
@ deltal 1xs @
@ delta2 1xs @
0.3-0.5~ @ H* 1xn @ initializes the'~  am~
03~ @Q* 1xn @ initializes thg?"
0.6~ @TT1l:1Ixv@ initializes the,
@ TT2: Ixv@
05 @ ZZ1 Ixmv@ initializes thB,
@ ZZ2 1xmv@

Notice that, since there are no exogenous variables in the inflation equation and no ARCH
effects present in either the measurement or the transition equations, there are no initializations

for these.
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Finally, the imposed constraints are:
beta= 0.0|th[1,1]; @ free parameter for the consfant @
delta = zeros(1,1); @ zero exog. variables imposed in transition equations @
Hstar = th[2:3,1]; @ free parameters for thED &PE @
Qstar = th[4,1]; @ free parameter fop?D @
TT =1th[5,1]|0.0; @ free parameter fpy @
ZZ =1th[6,1]|0.0 [1.0]-1.0 ; @ free parameterfigr  and constraints for the gap terms @
lambda = 1.0|1.0; @ impose 1.0 for each of the dependent variables@
epsi = 1.0; @ impose 1.0 for each of the contemp. state variables @
archq = zeros(3,1) |zeros(3,1); @ impose no ARCH effects in the measurement egns. @
archp = zeros(3,1); @ impose no ARCH effects in the state eqns. @

At this point, the model can be run through the filter and the likelihood procedures. If the user also
wants to calculate the mean-square errors of forecasts, then one should remember to reserve some
data at the end of the sample for this purpose and set the forecast sample duration in the section
entitled, /* CALCULATING OUT-OF-SAMPLE FORECAST ERRORS */.

4.2  The Gerlach and Smets modet:Base model with moving-average errors

Now, supposing we want to refine the model by allowing one of the measurement errors to
have a moving-average process with three lags. Similarly, we would like to impose an AR(2)
process for the gap instead of the AR(1). We also want to let the gap term enter contemporane-
ously as well as with a lag in the inflation equation. Finally, we prefer to make the constant in the
output equation time varying (a unit root process, to be more precise). To complete the changes to
the basic model, we add a constant and exogenous variables to the inflation equation.

4. See Kichian (1999).
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In this case, the model becomes

P
Yi = Y T 6
P P W
Yo = Wty tE
]
My = p‘t—l+r]tl ' (4.5)
g

O = 0101+ 9,0, + Ny

0
AT, = c+Bog, + B0, 1 +Y(L)w, +0(L)g

Once again, assuming th;at'tj_1 =VY¥_.1-9%_1 the model can be re-written in its more
compact form as

0
Ay, = P+ 0—0,_,+&

_ ul
W = He_q+N
t t—1 t . (46)
0 = ¢19t—1+¢29t—2+ntg

[l
AT, = c+Bog, + B0 1 +Y(L)w, +0(L)gf

To integrate the MA(3) term in the system, simply interprfa@ as a state variable. Do the
same for the time-varying constapt . Thus, in this new system, the observed dependent varia-
bles are still the same but naw=3. Since the moving-average term is a state variable and of lag
3, we must sev=1+3=4.We also point out the presence of exogenous variables  and their first
lags in this system. (Note that, by contrast, there are two lags of each variable “dpoil” and “de” in
the code. They are not included here in order to save space.)



In this case, the state-space representation is given by
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while the (3.1) equivalent of the,l]  state-space representation looks like this:
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_ Y1Y2Y3Y C
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Ay, 00 00 1-100100 00 O O0O 0
gt_z (*)Zt
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The corresponding writing in the code (with two lags for each of the exogenous variables
instead of one lag shown in the model here) is as follows:

_max_ParNames "const","dpoil","dpoil-11","dpoil-12","de","de-I1","de-I2","h2star",
"glstar”,"g2star","g3star",”phil","phi2","del1","del2","del3","gap",
"gap-I11"};

swa= ((ircpi-ircpi_I1)/4)~(100*(Irgdp-Irgdp_I1))~ones(nobs,1)
~drpoil~drpoil_I1~drpoil_|I2~de~de_l1~de_I|2~ones(nobs,1);

n=2; m=3; k=7; s=1, I=2; q_h=2; r=3; p=2; v=4;
The initialization of parameter values are carried out next. Thus,

betal =
-0.008~0.83~0.73~-0.39~2.32~3.28~-4.15~ @ betal: 1xk
@beta2: 1xk @
@ deltal 1xs @
@ delta2 1xs @
@ delta3 1xs @
0.7~ @ H*: 1xn @
0.45~0.46~0.06~ @ Q*: 1xm @
@ T1:1xv (1st row of 1st(vxv) diag block in TT) @
1.52~-0.59~ @ T2 : 1xv (1st row of 2nd(vxv) diag block in TT) @
@ T3:1xv (1st row of 3rd(vxv) diag block in TT) @
-0.57~-0.09~-0.02~0.16~-0.14; @ Z1:1xmv @
@ Z2:1xmv @
@ Imda:nx| @
@ psi:mxr @
@ alphl: qgx1 @
@ alph2: qgx1 @
@ alph3: qgx1 @
@ gamml:ppxl @
@ gamm2:ppxl @
@ gamm3:ppxl @

Once again, since there are no ARCH effects present in either the measurement or the transition
equations, there are no initializations for these.
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Finally, the imposed constraints are:

beta= th[1:7,1]|zeros(7,1);

delta = zeros(3,1);

Hstar = 0.0]th[8,1];

Qstar = th[9,1]|th[10,1]|th[11,1];

TT = zeros(4,1) |th[12:13,1]|0.0|0.0 |1.0|zeros(3,1);
ZZ = 1.0|th[14:16,1] |th[17:18,1]|zeros(2,1) |zeros(4,1)

|zeros(4,1) |1.0|(-1.0)|0.0|0.0 |1.0|zeros(3,1);
lambda= 1.0]1.0;

epsi = 1.0|1.0]1.0;
archq = zeros(3,1) |zeros(3,1);
archp = zeros(3,1) |zeros(3,1)|zeros(3,1);

4.3 The basic model with ARCH errors

In this section, we explain how ARCH errors can be integrated in one of the transition equations.
For this purpose, we present another version of the basic model found in example 4.1:

|
Ay, = B+ 0 —0_ +€

il

W = T[te+Bogt+Blgt—l+SI[
O

O = @10 1+ @0, +N;
T[f = 91”?—1”92";3_2"'”? '

r]te O N(O’ q2t)

(4.11)

P
G = Yo+ 3 Vi(nE_)’
i=1
In this model, there are two latent variables, aqed . The first is the output gap while
the second is the inflation expectations term. We assume that current expectations depend on past
own values and that the error term follows an ARCH(3) process. For the gap variable, we assume
a stationary AR(2) process with normal i.i.d.errors. The state-space framework looks like this:
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Notice that the error term corresponding to the expected inflation term is set equal to zero
in the n,J matrix. Instead, it is set to follow an ARCH(3) in the parameter restriction section as

follows:

_max_ParNames{"mu", "var(y)","var(pi)","var(g)",“phil","phi2","thetal","theta2",

"beta0","betal”, "gammal0","gammall”,"gammal2","gammal3"};

swd = (100*(Irgdp-Irgdp_11))~(ircpi/4)~ones(nobs,1)~ones(nobs,1);

n=2; m=2; k=1, s=1; I=2; q_h=2; r=2; p=3; v=3;

and the restrictions imposed on the parameters are given by:

beta=

delta

Hstar =
Qstar =

TT =
Z7 =

th[1,1]|0.0;

zeros(2,1);

th[2:3,1];

th[4,1]|0.0;

th[5:6,1]|0.0 |th[7:8,1]|0.0;

1.0]-1.0|zeros(4,1) |th[9:10,1]]|0.0|1.0|zeros(2,1);

lambda = 1.0[1.0;

epsi

1.0]1.0;
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archg = zeros(3,1) |zeros(3,1);
archp = zeros(4,1) |th[11:14,1]; @ free parameters for ARCH(3) in 2nd state
variable @

5. Conclusions

In this paper, we show, step-by-step and with examples, how to use the GAUSS codes developed
at the Bank to estimate state-space models with and without ARCH errors. The ARCH errors can
be present in either the measurement or the transition equations of the model.

With the code for the one-sided estimates in place, the next step is to extend the programs
to account for the possibility of obtaining smoothed estimates. In addition, it would be useful to
include various diagnostic tests to assess the model's goodness of fit. Finally, another possible
extension to the existing code is allowing for parameter variability over time. These issues are left
for future versions.



20

References

Gerlach, S. and F. Smets. 1997. “Output Gaps and Inflation.” Bank for International Settlements. Mimeo.

. 1999. “Output gaps and monetary policy in the EMU arearbpean Economic Revied@:
801-812.

Harvey, A. C. 1989 Forecasting, Structural Time Series Models and the Kalman Filambridge:
Cambridge University Press.

Harvey, A. C., E. Ruiz, and E. Sentana. 1992. “Unobserved Component Time Series Models with ARCH
Disturbances.Journal of Econometric82: 129-157.

Kichian, M. 1999. “Measuring Potential Output within a State-Space Framework.” Bank of Canada
Working Paper No. 99-9.

Kim, C-J. 1993. “Unobserved-Component Time Series Models with Markov-Switching Heteroscedasticity:
Changes in Regime and the Link between Inflation Rates and Inflation Uncertalluyrial of
Business and Economic Statistics 341-349.

Kuttner, K. N. 1994. “Estimating Potential Output as a Latent Varialdleurnal of Business and Economic
Statistics12: 361-368.

St-Amant, P. and S. van Norden. 198Feasurement of the Output Gap: A Discussion of Recent Research
at the Bank of Canadd.echnical Report No. 79. Ottawa: Bank of Canada.



Bank of Canada Working Papers

Documents de travail de la Banque du Canada
Working papers are generally published in the language of the author, with an abstract in both official lan-
guagesles documents de travail sont publiés généralement dans la langue utilisée par les auteurs; ils sont
cependant précédés d'un résumé bilingue.

2000
2000-1 The Employment Costs of Downward Nominal-Wage Rigidity J. Farés and S. Hogan
1999
99-20 The Expectations Hypothesis for the Longer End of the Term Structure:

Some Evidence for Canada R. Lange
99-19 Pricing Interest Rate Derivatives in a Non-Parametric

Two-Factor Term-Structure Model J. Knight, F. Li, and M. Yuan
99-18 Estimating One-Factor Models of Short-Term Interest Rates D. Mc Manus and D. Watt
99-17 Canada’s Exchange Rate Regime and North American Econo-

mic Integration: The Role of Risk-Sharing Mechanisms Z. Antia, R. Djoudad, and P. St-Amant
99-16 Optimal Currency Areas: A Review of the Recent Literature R. Lafrance and P. St-Amant
99-15 The Information Content of Interest Rate Futures Options D. Mc Manus
99-14 The U.S. Capacity Utilization Rate: A New Estimation Approach R. Lalonde
99-13 Indicator Models of Core Inflation for Canada R. Dion
99-12 Why Canada Needs a Flexible Exchange Rate J. Murray
99-11 Liquidity of the Government of Canada Securities Market: Stylized Facts

and Some Market Microstructure Comparisons to the United States T. Gravelle
99-10 Real Effects of Collapsing Exchange Rate Regimes:

An Application to Mexico P. Osakwe and L. Schembri
99-9 Measuring Potential Output within a State-Space Framework M. Kichian
99-8 Monetary Rules When Economic Behaviour Changes R. Amano, D. Coletti, and T. Macklem
99-7 The Exchange Rate Regime and Canada’s Monetary Order D. Laidler
99-6 Uncovering Inflation Expectations and Risk Premiums

from Internationally Integrated Financial Markets B.S.C. Fung, S. Mitnick, and E. Remolona
99-5 The Quantity of Money and Monetary Policy D. Laidler
99-4 An Intraday Analysis of the Effectiveness of Foreign Exchange

Intervention N. Beattie and J-F. Fillion
99-3 Forecasting GDP Growth Using Artificial Neural Networks G. Tkacz and S. Hu
99-2 Capital Gains and Inflation Taxes in a Life-cycle Model C. Leung and G.-J. Zhang

Copies and a complete list of workin?. papers are available from: o .
Pour obtenir des exemplaires et une liste compléte des documents de travail, priere de s'adresser a:

Publications Distribution, Bank of Canada Diffusion des publications, Banque du Canada
234 Wellington Street Ottawa, Ontario K1A 0G9 234, rue Wellington, Ottawa (Ontario) K1A 0G9
E-mail / Adresse électronique: publications@bank-banque-canada.ca
WWW: http://www.bank-banque-canada.ca/



	Title page
	Contents
	Abstract/Résumé
	1. Introduction
	2. The Harvey, Ruiz, and Sentana model
	2.1 The quasi-optimal filter
	3. Explanation of the GAUSS codes
	4. Examples
	4.1 The basic model
	4.2 The Gerlach and Smets model
	4.3 The basic model with ARCH errors
	5. Conclusions
	References

