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Abstract 

We explore properties of asymmetric generalized autoregressive conditional 
heteroscedasticity (GARCH) models in the threshold GARCH (GTARCH) family and 
propose a more general Spline-GTARCH model, which captures high-frequency return 
volatility, low-frequency macroeconomic volatility as well as an asymmetric response to 
past negative news in both autoregressive conditional heteroscedasticity (ARCH) and 
GARCH terms. Based on maximum likelihood estimation of S&P 500 returns, S&P/TSX 
returns and Monte Carlo numerical example, we find that the proposed more general 
asymmetric volatility model has better fit, higher persistence of negative news, higher 
degree of risk aversion and significant effects of macroeconomic variables on the low-
frequency volatility component. We then apply a variety of volatility models in setting 
initial margin requirements for a central clearing counterparty (CCP). Finally, we show 
how to mitigate procyclicality of initial margins using a three-regime threshold 
autoregressive model. 
 
Bank topics: Econometric and statistical models; Payment clearing and settlement 
systems 
JEL codes: C58, G19, G23, G28 

Résumé 

Nous étudions les propriétés de modèles asymétriques d’hétéroscédasticité conditionnelle 
autorégressive généralisée (GARCH) de la famille des modèles GARCH à seuil 
(TGARCH) et proposons un modèle TGARCH à fonction spline plus général où les termes 
de l’hétéroscédasticité conditionnelle autorégressive (ARCH) et généralisée rendent 
compte de la volatilité des rendements de variables à forte fréquence, de la volatilité des 
variables macroéconomiques à faible fréquence et de la réaction asymétrique aux nouvelles 
défavorables passées. Une estimation des rendements des indices S&P 500 et S&P/TSX 
par la méthode du maximum de vraisemblance ainsi qu’une simulation numérique de 
Monte-Carlo permettent d’arriver à plusieurs constats : le modèle de volatilité asymétrique 
plus général que nous proposons est mieux adapté, les effets des nouvelles défavorables 
persistent plus longtemps, le degré d’aversion au risque est plus élevé et les variables 
macroéconomiques ont une incidence significative sur la composante à faible fréquence de 
la volatilité. Nous recourons ensuite à divers modèles de volatilité pour établir les marges 
initiales exigées par une contrepartie centrale. Enfin, nous montrons comment atténuer la 
procyclicité des marges initiales en faisant appel à un modèle autorégressif à seuil à trois 
régimes. 

Sujets : Méthodes économétriques et statistiques; Systèmes de compensation et de 
règlement des paiements 
Codes JEL : C58, G19, G23, G28 
 

 



Non-technical summary
The mandatory use of clearing in certain markets is one of the cornerstone regulations in-

troduced to prevent another global financial crisis. Central counterparties (CCPs) base their risk

management systems on a tiered default waterfall relying on two types of resources provided by

their members: margins and default fund contributions. The initial margins are typically set based

on value at risk (VaR) calculations. Since VaR models are typically volatility-based, the proper-

ties of the underlying volatility models such as risk aversion are essential for setting initial margin

requirements.

There is high degree of procyclicality of margin requirements based on VaR models. On the

one hand, there is a need for margins to adjust to changes in the market and be responsive to

risk. Thus, margins increase substantially in times of stress and go down when volatility is low.

However, this practice produces big changes in margins when markets are stressed, which may

lead to liquidity shocks. In addition, in stable times margins may be too low. CCPs try to reduce

the procyclicality of their models by setting a floor on the margin.

The current study introduced a flexible volatility model that can capture a high degree of risk

aversion as well as effects of macroeconomic variables that can be used for stress testing. The

model is extended to reduce procyclicality using a three-regime model rather than ad hoc tools

such as setting a 25% floor for the initial margin, as was suggested in the literature. Moreover,

unlike other literature, we introduce not only the lower bound (floor) but also the upper bound

(ceiling) for the initial margins, as the upper bound is essential at times of liquidity stress in the

market. Finally, we define and use a loss function with different degrees of trade-off between two

competing objectives of the CCP: risk sensitivity and mitigation of procyclicality.
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1 Introduction

The generalized autoregressive conditional heteroscedasticity (GARCH) model and exponentially

weighted moving average (EWMA) RiskMetrics model are popular for measuring and forecasting

volatility by financial practitioners. Since the ARCH and GARCH models were introduced by En-

gle (1982) and Bollerslev (1986), there have been many extensions that resulted in better statistical

fit and forecasts. For example, GJR-GARCH (Glosten, et al. (1993)) is one of the well-known

extensions of GARCH models with an asymmetric term that captures the effect of negative shocks

in equity prices on volatility, commonly referred to as the leverage effect. EGARCH introduced by

Nelson (1991) is an alternative asymmetric model of the logarithmic transformation of conditional

variance that does not require positivity constraints on parameters. Different volatility regimes

can be captured by Markov Regime Switching ARCH and GARCH models, allowing for stochas-

tic time variation in parameters. These models were introduced by Cai (1994) and Hamilton and

Susmel (1994) respectively.

Since tail risk measures typically incorporate forecasts of volatility, model specification is

important. Engle and Mezrich (1995) introduced a way to estimate value at risk (VaR) using a

GARCH model, while Hull and White (1998) proved that a GARCH model has a better perfor-

mance than a stochastic volatility model in the calculation of VaR. The GJR-GARCH model was

also used by Brownlees and Engle (2017) among others for forecasting volatility and measurement

of tail and systemic risks.

A typical feature of the GARCH family models is that the long-run volatility forecast con-

verges to a constant level. An exception is the Spline-GARCH model of Engle and Rangel (2008)

that allows the unconditional variance to change with time as an exponential spline and the high-

frequency component to be represented by a unit GARCH process. This model may incorporate
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macroeconomic and financial variables into the slow-moving component and, as shown in Engle

and Rangel (2008), improves long-run forecasts of international equity indices. In this model the

unconditional volatility coincides with the low-frequency volatility. The Factor-Spline-GARCH

model developed in Rangel and Engle (2012) is used to estimate high- and low-frequency compo-

nents of equity correlations. Their model is a combination of the asymmetric Spline GJR-GARCH

and the dynamic conditional correlations (DCC) models. Another application of an asymmetric

Spline GJR-GARCH model for commodity volatilities is in Carpantier and Dufays (2012).

In this paper we generalize the asymmetric Spline-GARCH models using a more general

threshold GARCH model as in Goldman (2017). The widely used asymmetric GJR-GARCH

model has the problem that the unconstrained estimated coefficient of α often has a negative value

for equity indices. A typical solution to this problem is setting the coefficient of α to zero in

the constrained maximum likelihood or Bayesian estimation. Following Goldman (2017) we use a

generalized threshold GARCH (GTARCH) model where both coefficients, α and β, in the GARCH

model are allowed to change to reflect the asymmetry of volatility due to negative shocks. We use

data for the US and Canadian equity indices, S&P 500 (SPX) and S&P/TSX (TSX), as well as a

numerical example to estimate various asymmetric volatility models. We find that the most general

GTARCH model fits better and does not have a negative alpha bias. We also find higher persistence

and more risk aversion in the GTARCH models.

We add macroeconomic variables of GDP growth, inflation, overnight interest rate and ex-

change rate into the spline model for the slow-moving component. The Spline-Macro model results

in a smaller number of optimal knots for SPX and has better fit for both SPX and TSX.

Next we apply GTARCH, Spline-GTARCH and Spline-Macro-GTARCH models for VaR and

conditional value at risk (CVaR) or Expected Shortfall (ES) estimation. For comparison we also
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estimate RiskMetrics exponentially weighted moving average (EWMA), GARCH, GJR-GARCH

and GTARCH01 models. In the latter model that we introduce, the asymmetric effect of negative

news is in the GARCH term but not in the ARCH term. We perform backtests and compare the

performance of VaR and ES models using the Kupiec (1995) test. We find that all asymmetric

volatility models pass the Kupiec test for SPX and TSX data, while EWMA and GARCH fail the

test.

The mandatory use of clearing in certain markets is one of the cornerstone regulations intro-

duced to prevent another global financial crisis. However, the rules implemented have not been

tested in crisis conditions. CCPs base their risk management systems on a tiered default waterfall

relying on two types of resources provided by their members: margins and default fund contribu-

tions. The CCPs, by acting as intermediary, have exposure to both the buyer and the seller. The

initial margins are typically set by CCPs based on VaR models (Murphy et al. (2016), Knott and

Polenghi (2006)).

As documented in Murphy et al. (2014, 2016) and Glasserman and Wu (2017) margin models

are typically procyclical and may negatively impact members’ funding liquidity at the times of

crisis. We explore the procyclicality of initial margin requirements based on VaR volatility models

above. On the one hand, there is a need for margins to adjust to changes in the market and be

responsive to risk. Thus margins are higher in times of stress and lower when volatility is low.

However, this practice may produce big changes in margins when markets are stressed, which in

turn may lead to liquidity shocks. In addition, in stable times margins may be too low. CCPs

try to reduce the procyclicality of their models by using various methods, including setting floors

on margin. Some such methods are discussed in white papers produced by the Bank of England

(Murphy et al. (2016)). Their study suggests five tools, including a floor margin buffer of 25% or

1GTARCH0 is a subset of the GTARCH model and will be defined in the context below.
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greater to be used in times of stressed conditions. We suggest placing both a floor and a ceiling on

margins, by using a threshold autoregressive model with three regimes (3TAR), as well as expert

judgement based on historical margin settings. We estimate 3TAR for each volatility-based VaR

model and discuss the resulting regimes and settings for floor and ceiling. If the margins were

allowed to be set within two bounds and the high-volatility regime was not persistent, margins

would be stable. Such policy could be also useful to manage expectations at times of stressed

liquidity.

The paper is organized as follows. Section 2 presents GTARCH and Spline GTARCH models,

maximum likelihood estimation and tail risks. In Section 3 we perform data analysis for S&P500,

S&P/TSX and a numerical example with Monte Carlo simulations. In Section 4 we compare tail

risks and perform backtests of all models. Next we analyze procyclicality properties and estimate

a three-regime TAR model for setting a floor and a ceiling on margins. Section 5 presents the

conclusion and further work.

2 Asymmetric Threshold GARCH Models

In this section, we present the generalized threshold GARCH model (GTARCH) and a family of

its subset models including GJR-GARCH, GTARCH0 and GARCH. Next we add spline to the

GTARCH model extending the analysis of Engle and Rangel (2008).

2.1 The Generalized Threshold GARCH (GTARCH) Model

One of the stylized facts in empirical asset pricing is negative correlation between asset returns and

volatility commonly explained by risk aversion and leverage effect. In a popular threshold ARCH

or GJR-GARCH model (Glosten, Jagannathan, and Runkle (1993)), a negative return results in an

asymmetrically higher effect on the next-day conditional variance compared to a positive return.
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Consider time series of logarithmic returns rt with constant mean µ and the GJR-GARCH

conditional variance σ2
t given by

rt = µ+ut = µ+σtεt (1)

σ
2
t = ω+αu2

t + γu2
t I(rt−1−µ < 0)+βσ

2
t−1,

where εt are Gaussian (or other distribution) independent random variables with mean zero and unit

variance, I(rt−1−µ < 0) is a dummy variable equal to one when previous-day innovation ut−1 is

negative, α and β are GARCH parameters, and γ is an asymmetric term capturing risk aversion. The

stationarity condition for the GJR-GARCH model is approximately given by: 1−α−β− 1
2γ > 0.

2

However, there is a problem with the threshold ARCH model above since coefficient α may

take negative values in practice. In such a case, constrained optimization imposing positivity on

all variance parameters results in α equal to zero. Goldman (2017) suggested using a more general

Threshold GARCH (GTARCH) model:

σ
2
t = ω+αu2

t + γu2
t I(rt−1−µ < 0)+βσ

2
t−1 +δσ

2
t−1I(rt−1−µ < 0), (2)

where the added term δ reflects the degree of asymmetric response in the GARCH term. In this

model both parameters γ and δ create the asymmetric response of volatility to negative shocks.

Results below show that allowing both ARCH and GARCH parameters to change with negative

news results in better statistical fit and smaller information criteria. Moreover, the GTARCH model

not only better captures the leverage effect but also shows higher persistence for negative returns

compared to its subset GJR-GARCH model. In addition, the coefficients of µ and ω could be

2To be more precise the stationarity condition is given by: 1−α−β−θγ> 0, where θ is percentage of observations
in the regime with negative innovations ut < 0. In practice, θ is set to 0.5.
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allowed to change with the regime of negative news to make the model even more flexible. The

GTARCH is a generalized model with the following subset of models: GJR-GARCH (δ = 0),

GTARCH0 (γ = 0) and GARCH (γ = 0 and δ = 0).

The stationarity condition for the GTARCH model is given by: 1−α−β− 1
2γ− 1

2δ > 0.3 The

more general GTARCH model, due to its flexibility of parameters, shows different dynamics for

GARCH parameters when the news is negative and allows for higher persistence in the regime of

negative news. This in turn takes away the negative bias from α, which measures the reaction to

the positive news. At the same time, estimation of extra parameters using the maximum likelihood

is a straightforward extension, as shown in Section 2.3.

In addition to GTARCH models we also estimate the EWMA model defined as:

σ
2
t = (1−λ)r2

t−1 +λσ
2
t−1, (3)

where λ is a smoothing parameter estimated using maximum likelihood. This model is not sta-

ble but is a benchmark for 1-day volatility forecasts with a typical estimate of λ = 0.94 frequently

used in the industry. The EWMA model is popular for measuring tail risks, as will be discussed

below.

Finally, there has been growing literature in using intra-daily measures of variance such as

realized variance (RV) computed as the sum of squared returns using 5-minute intervals. Andersen

et al. (2003) showed that the ARFIMA model can be used for forecasting realized variance. The

recent contributions on using these measures for predicting future variance are the HAR model of

Corsi (2009) and the model using VIX by Bekaert and Hoerova (2014), among others. Following

this literature we evaluate each model in this paper using RV as a benchmark observable variance.

3To be more precise, the stationarity condition is 1−α−β−θγ−θδ > 0.
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2.2 The Spline Generalized Threshold GARCH (Spline-GTARCH) Model

The literature incorporating economic variables for modeling and forecasting financial volatil-

ity has been growing. For example, Officer (1973), Schwert (1989), Roll (1988), Balduzzi et

al. (2001), and Anderson et al. (2007), among others, found that even though the linkages be-

tween aggregate volatility and economy are weak volatility is higher during recessions and post-

recessionary stages, and lower during normal periods. Engle and Rangel (2008) introduced the

Spline-GARCH model combining high-frequency financial returns and low-frequency macroeco-

nomic variables. The latter paper analyzes the effects of macroeconomic variables on the slow-

moving component of volatility using spline. This model releases the assumption of volatility

mean reversion to a constant level, which is a property of a stable GARCH model. Instead, the

long-run unconditional variance is dynamic.

The Engle and Rangel (2008) Spline-GARCH model is given by the following returns rt ,

GARCH variance σ2
t and quadratic spline τt equations:

rt−Et−1rt =

√
τtσ

2
t zt ,

σ
2
t = (1−α−β)+α

(
(rt−1−Et−1rt)

2

τt−1

)
+βσ

2
t−1, (4)

τt = c exp(w0t +
k

∑
i=1

wi((t− ti−1)+)
2 +mtγ),

(t− ti)+ =

{
(t− ti), if t ≥ ti,
0, otherwise,

where zt is a standard Gaussian white noise process, σ2
t is a GARCH process with an uncondi-

tional mean of one, mt is the set of weakly exogenous variables (i.e., macroeconomic variables),

and (t0 = 0, t1, t2, ..., tk = T ) is a partition of total number of observations T into k equal subinter-

vals. The constant term in the GARCH equation is equal to (1−α−β) due to the normalization
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of the GARCH process. Since the constant term in the GARCH variance equation is normal-

ized, the long-run (unconditional) variance is determined by the spline. A higher number of knots

(k) implies more cycles in the low-frequency volatility, while parameters w1, ...,wk represent the

sharpness of the cycles.

We propose the Spline-GTARCH model that accounts for both asymmetric effect in high-

frequency volatility and the slow-moving spline component. Combining the Spline model (4)

with the general GTARCH asymmetric volatility model in equation (2) we get:

rt = µ+
√

τtσ
2
t zt ,

σ
2
t = ω+α

(
(rt−1−µ)2

τt−1

)
+ γ

(
(rt−1−µ)2

τt−1

)
I(rt−1−µ < 0) (5)

+βσ
2
t−1 +δσ

2
t−1I(rt−1−µ < 0),

τt = c exp(
k

∑
i=1

wi((t− ti−1)+)
2 +mtγ),

where ω = (1−α−β− 1
2γ− 1

2δ) and omega > 0 if the GTARCH process is stable.

In equation (5) we simplified the return process with a constant µ instead of the time variant

conditional mean (which could be easily extended for a different process). In practice we also

dropped the constant w0 in the quadratic spline as it was never significant.4

The vector of all jointly estimated parameters in the most general model is θ= {µ,α,β,γ,δ,c,w1, ...,wk}.

We note that Spline-GJR-GARCH, Spline-GARCH and Spline-GTARCH0 (the latter has asym-

metry only in the GARCH term) are subsets of the model in equation (4) and will be estimated as

part of the analysis.

4A similar Spline-GARCH specification with constant µ and w0 = 0 is used by NYU Stern VLAB Institute at
vlab.stern.nyu.edu.
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2.3 Maximum Likelihood Estimation

We use the maximum likelihood estimation (MLE) to jointly estimate parameters in the Spline-

GTARCH model: θ = {µ,α,β,γ,δ,c,w1, ...,wk}. The positivity and stability restrictions on the

parameters are given by α,β,γ,δ≥ 0 and α+β+0.5γ+0.5δ < 1.

Even though we use a Gaussian process for returns in the likelihood function below, the nor-

mality assumption is not crucial since asymptotically, a quasi-maximum likelihood approach can

be used if returns are not Gaussian.

The likelihood function is the product of probability density functions:

f (rt ;µ,σt ,τt) =
1√

2πτtσ
2
t

e
− 1

2σ2
t

(rt−µ)2
τt .

We maximize the log likelihood function below to find estimates of θ̂:

L(θ̂) = log(L(rt |θ)) =−
T
2

log2π− 1
2

T

∑
t=1

(
logσ

2
t + logτt +

(rt−µ)2

σ2
t τt

)
. (6)

The number of knots, k, is chosen by minimizing information criteria: Bayesian-Schwartz in-

formation criterion BIC =−2L(θ̂)+d×ln(T )/T and Akaike information criterion AIC =−2L(θ̂)+

d×2/T , where d is the dimension of θ̂. In addition to selecting the number of knots in the spline,

we use the above criteria for comparing the overall fit of various volatility models discussed in this

paper. Due to a higher penalty on a number of parameters, a model choice based on BIC criterion

can result in a more parsimonious model.

2.4 Tail Risks

One of the most popular tail risk measures is q% value at risk (VaR), which is defined as a loss of

the portfolio that can be exceeded only with probability 1− q. For a unit value of the portfolio,

essentially VaR is the negative of (1−q) quantile of the distribution of returns, where q is the upper
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tail probability:5

P
(
rt <−VaRq

)
= 1−q.

Both in-sample and out-of-sample daily VaR can be computed based on the volatility model

used for estimating and forecasting of portfolio returns. The VaR is typically computed using either

a parametric assumption for the distribution of returns or bootstrapped standardized residuals (also

called “filtered historical simulation”).

If a parametric assumption is used with a cumulative density function F , the 1-day q% VaR is

given by:

VaRt+1 = σt+1×F−1
(1−q),

where F−1
(1−q) is the (1− q) quantile of the distribution of F . If a standard normal distribution is

used for F , the daily VaR can be estimated based on F−1
(1−q) = 1.282,1.645,2.326 for q= 90%,95%

and 99% respectively.

If the standardized residuals et =
rt−µ

σt
after adjustment for time-varying volatility still have

fat tails, the alternative approach is to use bootstrap or filtered historical simulation (FHS) based

on Hull and White (1998). They suggest estimating the daily VaR through a filtered process by

estimating the F’s quantile instead of using the parametric distributional assumption. The estimate

of F−1
1−q is the 1−q quantile of the empirical distribution of the standardized residuals et .

In an extreme outcome of 1− q probability, the actual loss (L) is larger than VaR, especially

when the loss distribution has a very long tail. An alternative commonly used tail risk is conditional

VaR (CVaR) or expected shortfall (ES), which measures the expected value of the portfolio loss

given that the loss actually exceeded the VaR.

5Since VaR is reported as a positive number it is typically measured as negative of a 1%, 5% or 10% quantile.
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The ES is given by

ES1−q = E(L|L >VaR1−q).

Similar to VaR we can apply a parametric or Hull and White (1998, HW) method to estimate the

expected shortfall. In the case of normal distribution it is given by

ES1−q =
φ(VaR1−q)

q
×σt ,

where φ is standard normal probability density function.

For the HW method, we sort the standardized residuals and find the average of them in the

1−q percent tail. Then we multiply this value by the 1-day forecast of volatility.

3 Data Analysis

In this section we perform data analysis for S&P500 (SPX), S&P/TSX (TSX) and a numerical

example with Monte Carlo simulations. The results of thirteen estimated volatility models are

discussed below. The daily SPX data for the period between 10/08/2002 and 12/30/2016 was ob-

tained from CRSP in the Wharton Database, while the TSX data for the period between 03/17/2003

and 03/31/2017 was obtained from Bloomberg. For both series we found logarithmic returns that

resulted in 3500 observations. Realized variances (RVs) computed using 5-minute returns were ob-

tained from the Oxford-Man Institute of Quantitative Finance.6 The number of observations for the

RV was slightly smaller than for daily returns: 3487 observations for SPX and 3480 observations

for TSX.

For the spline model with macroeconomic variables we used similar data to Engle and Rangel

(2008), including quarterly nominal GDP growth rates for both countries, daily US federal funds

effective rate and Canadian overnight money market financing rate, monthly CPI inflation for both

6http://realized.oxford-man.ox.ac.uk/

12



countries, daily Trade Weighted U.S. Dollar Index and USD/CAD exchange rates. We also added

monthly unemployment rates for each country. Table 1 provides the description and sources of

data for all variables.

Table 1 here

We transformed macroeconomic variables for the Spline-Macro model in the following way.

For the CPI, GDP and exchange rates we used log differences, while interest rates and unemploy-

ment rates were used at observed levels. We ran the AR(1) model for each variable and found

the squared residuals. Using the squared residuals we computed the moving average volatility for

each variable. For quarterly GDP data, monthly CPI and monthly unemployment data, we used a

250-day moving average window, while for daily data we used a 25-day window.7

Table 2 in Panel A presents the results of estimated simple GTARCH family models without

spline for SPX data. We estimate GTARCH with all parameters (α,β,γ,δ); GJR-GARCH (δ = 0),

GTARCH0 (γ = 0) and GARCH (γ = 0 and δ = 0). First we performed unconstrained optimization

without imposing a positivity constraint on parameters and then we constrained all parameters to

be positive. For the unconstrained results we see that α = −0.0139 and is statistically significant

in the GJR-GARCH model. Clearly the GJR-GARCH model does not effectively capture the risk

aversion in a single asymmetric parameter γ shifting α to a negative value in order to distinguish

better negative and positive news. However, the interpretation of negative α that positive news

reduces volatility in the next period is unintuitive. At the same time, α is positive and not significant

in the more general GTARCH model. Since GARCH parameters need to be positive we impose

constraints in optimization, which results in estimated α being positive but very close to zero in

these models. Most model parameters are not affected by imposing the positivity constraint, except
7We experimented with several windows for moving average, including 100 days for daily data, but we presented

a 250-day window based on Engle and Rangel (2008) settings with annual estimates.
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for the GJR-GARCH model.

In the GTARCH model both coefficients γ = .13 and δ = .16 are highly significant, showing

the asymmetric effect present in both ARCH and GARCH terms and showing higher persistence

in the regime of negative news. Based on both AIC and SIC criteria, a GTARCH model is chosen

among alternatives. All models satisfy the stationarity condition with overall persistence = α+

β+ 1
2γ+ 1

2δ < 1.

In order to check the robustness of the MLE algorithm, we performed Monte Carlo experiments

and present an example in Panel B of Table 1. We used previously estimated GTARCH parameters

for the SPX as true parameters of the data-generating process in this example. We generated data

using equation (2) with 5000 observations and 500 replications. For each replication of the data,

we estimated each model in the GTARCH family and presented means and standard errors of the

overall results. For the unconstrained optimization we still find a negative α for the GJR-GARCH

model, while the GTARCH model has a small positive α. The parameters of the constrained

GTARCH model are very close to true values (within one standard deviation). The parameters

of subset models (GJR-GARCH, GTARCH0 and GARCH) produce biases due to some dropped

parameters in their specification.

Table 2 here

Tables 3 and 4 show results of estimated GTARCH family models including specifications

without spline, with spline and with spline and macroeconomic variables in equation (5). Table 3

is for SPX, while Table 4 is for TSX. Only results with imposed positivity constraints are reported.

In addition to the volatility models presented in the table, we estimated the RiskMetrics EWMA

volatility model that is commonly used as a benchmark in volatility forecasting and VaR estimation.

The MLE for the EWMA model resulted in the following smoothing parameters with standard error
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given in brackets and information criteria:

SPX: λ = 0.9409 (0.0049), AIC = 2.7262,BIC = 2.7279

TSX: λ = 0.9369 (0.0055), AIC = 2.8222,BIC = 2.8240

The smoothing parameter is very close to .94 in both cases, which is frequently used in practice.

Thus, the US and Canadian indices have similar EWMA volatility dynamics.

Based on the BIC information criterion with heavier penalty for extra parameters, the GTARCH

model without spline is preferred, while using the AIC criterion, the Spline-Macro-GTARCH is

the superior model. This result holds for both SPX and TSX. Note that both selected models in-

clude the most general GTARCH specification with the presence of asymmetry in both ARCH and

GARCH terms. Moreover, the asymmetric term δ goes up to 0.24 in the SPX Spline GTARCH

model, making the response to negative news even more asymmetric compared to GTARCH with-

out spline with δ = 0.16. The optimal number of knots in the SPX Spline model is 17, while the

number of knots goes down to 8 when we add macroeconomic variables. Macroeconomic vari-

ables are useful in modeling the low-frequency component, as their presence reduces the number

of knots for cycles and they have a statistically significant effect on long-run volatility dynamics.

Engle and Rangel (2008) use macroeconomic variables for panel regressions of 48 countries using

annual volatility data. In our paper, we model macroeconomic variables for daily volatility fore-

casting in the slow-moving component. Thus, statistically significant macroeconomic variables in

the low-frequency component could be used for stress testing of VaRs, which is a typical regu-

latory requirement. The following variables are statistically significant at 10% for predicting the

low-frequency volatility component for SPX:

- Interest rate (InterestR) and interest rate volatility (InterestRV ), both which have a positive effect

on SPX volatility
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- Volatility of the unemployment rate (unempvV ), which has a negative effect on SPX volatility

- Volatility of USD trade weighted index (USDV ), which has a positive effect on SPX volatility

- GDP growth, which has a negative effect on SPX volatility

All the signs are as expected except for the volatility of the unemployment rate. It might be the

case that the reduction in unemployment rate rather than an increase in it is driving these results.

As for the Canadian data, fewer macroeconomic variables were found significant at 10% and

the optimal number of knots stayed the same (15 knots) after the macroeconomic variables were

added:

- Inflation Volatility (In f lationV ), which has a negative effect on TSX volatility

- Interest rate volatility (InterestRV ), which has a negative effect on TSX volatility

- Volatility of USD/CAD exchange rate (USDCADV ), which has a positive effect on TSX volatility

While the effect of Canadian dollar exchange rate volatility has an expected positive sign, the

negative signs for volatilities of inflation and interest rate are not intuitive. The Canadian overnight

interest rate was volatile before the crisis in our sample between 2003 and 2007. During the 2008-

2009 financial crisis and afterwards, the interest rate was stable. Thus, during the time of high

volatility for equities, interest rates were not volatile compared to the previous period. Similarly,

while the US experienced the largest volatility of inflation (from inflation to deflation) during the

2008-2009 financial crisis, the largest drops in consumer prices in Canada happened in Quarter 1

2008 (before the crisis) and in Quarter 3 2012, which were relatively calm periods in the equity

market.
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The Spline-Macro model has lower persistence than the Spline model and No-Spline model.

Spline-Macro models thus have faster convergence of variance to the long-run spline macroeco-

nomic component. This is because the long-run component is not as smooth as in the simple spline

model.

Table 5 shows the degree of risk aversion in each model measured by the correlation between

returns rt−1 and log difference of fitted conditional variance log(σ2
t /σ2

t−1) for each model. The

more negative correlation implies a higher degree of risk aversion because of asymmetrically

higher volatility for negative returns. For comparison, the log difference in the VIX index has

a correlation with the S&P 500 return of about -0.7. Table 5 shows that the highest degree of

risk aversion is captured by the GTARCH models and the smallest correlation is for the EWMA,

GARCH and RV that are symmetrical.

Tables 3, 4, and 5 here

Figures 1, 2, 3, and 4 here

Figures 1 and 2 show annualized GTARCH volatilities for SPX data while Figures 3 and 4

present similar graphs for TSX. First we present the Spline-GTARCH volatility compared to a

simple GTARCH in Figures 1 and 3. Next we compare Spline-Macro-GTARCH volatility to a

simple GTARCH in Figures 2 and 4. We can see that the low-frequency component is smooth for

both SPX and TSX data in the Spline-GTARCH model and the high-frequency component is close

but generally higher than GTARCH. Once the macroeconomic variables are added, the dynamics

of low-frequency volatility become much less smooth. This is due to reaction to macroeconomic

volatility in turbulent times affecting the long-run volatility component. The reaction to the nega-

tive news is also amplified by the asymmetric effect in the GTARCH model.
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Overall, the US and Canadian market volatilities have similar dynamics and peaks; however,

the Canadian market has a lower level of volatility. For the low-frequency spline component, the

highest level during the financial crisis was 17% for TSX compared to over 40% for SPX. Similarly,

the high-frequency TGARCH volatility peaks in the US market are more than twice those of the

Canadian market.

Figures 5 and 6 show RV versus GTARCH for SPX and TSX. We observe that RV is more

procyclical compared to GTARCH as RV graphs exhibit higher peaks and lower levels in calm

periods.

Figures 5 and 6 here

4 Initial Margin Measures

In this section we compute tail risks and perform backtests of all models. Next we analyze initial

margin models’ procyclicality and estimate a three-regime threshold autoregressive model (3TAR)

for setting a floor and a ceiling on margins.

4.1 Properties of Tail Risks for Setting Margin Requirements

Figures 7 and 8 show the logarithmic returns in red and negative values of 1-day 99% value at risk

(VaR) for SPX and TSX respectively. We generated 1-day 99% VaRs using the Hull and White

(1998) bootstrap method (the blue line) and the normal distribution (the red line). We used the

Spline-GTARCH model on these graphs while all other models are reported in Tables 6 and 7.

The margin requirements with the Hull and White method are higher because this method uses the

actual returns distribution with fat tails compared to normal distribution.

Tables 6 and 7 here
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Figures 7 and 8 here

Table 6 presents 1- to 3-day forecasts of all volatility models, VaR and expected shortfall (ES)

produced by each model for SPX and TSX at the time of low volatility at arbitrarily selected

dates in 2016 and 2017. Table 7 reports the same results at the time of high volatility in the

fall of 2008. Margins are usually computed over some period of time greater than one day. For

example, exchange traded assets are cleared within 2-3 days in the US. Thus, in Tables 6 and 7

we presented 1- to 3-day tail risks that can be easily extended to longer periods. One-day VaR

and ES at q = (90%,95%,99%) are reported using the Hull and White (1998) method.8 In order

to compute t-day VaR and ES we used
√

t adjustment based on Basel requirement and common

practice.9 Monte Carlo simulations would be an interesting extension of the method, especially for

longer time horizons.

The results for the SPX and TSX data in Table 6 show increasing volatility forecasts from 1

to 3 days since the starting point is at the time of low volatility and volatility is mean-reverting.10

Similarly, volatility forecasts go down in Table 7 when we start in a high-volatility period. While

there is no one specific model that always has the highest volatility forecast and tail risks among

reported models, those with asymmetric terms (GTARCH, GJR-GARCH and GTARCH0) produce

higher forecasts and tail risks than symmetrical GARCH and EWMA models. Thus, models ac-

counting for risk aversion such as GTARCH are useful to make sure that volatility is well measured

and sufficient margin requirements are set.

Tables 6 and 7 also illustrate that models with spline have smaller volatility forecasts than

models with Spline-Macro at the time of low volatility. The opposite is true at the time of high
8To save space, we did not report the results with normal distribution which have similar patterns but lower esti-

mates, as shown in Figures 7 and 8.
9The

√
t multiplier is correct only under the assumption of independence in returns.

10This is true for all models except EWMA, which is not stationary and thus can produce only 1-day volatility
forecast.
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volatility. Thus, Spline-Macro models turn out to be less procyclical. This could be explained

by countercyclical monetary policy as well as faster convergence to a less smooth long-run spline

macroeconomic component as was found from lower persistence of Spline-Macro models in Tables

3 and 4.

4.2 Model Validation

Backtesting is often used in practice for model validation. The testing window is set to evaluate the

number of VaR violations (or breaches) and compare it to the expected number of violations for

a specific VaR quantile. For example, if VaR is measured with q = 99% the expected number of

violations is 1%. Considering the whole sample size of N=3500 observations, we would expect 35

violations.11 If the actual breach rate turns out to be too high the VaR margin model underestimates

risk, which creates a loss for the CCP. Alternatively, if the breach rate is too low the VaR model

overestimates risk and results in unnecessary high margin charges for the members of the CCP.

Thus, margins can be set based on VaR that has a reasonable number of backtest violations falling

within some confidence interval.

The most popular backtesting statistical test used in practice is the Kupiec (1995) proportion

of failures (POF) test, with the null hypothesis that the breach rate is equal to expected (1− q)%

quantile. The two-sided test has asymptotic likelihood ratio statistics with chi-square distribution

and one degree of freedom X2(1).

Table 8 presents the results of backtesting with the number of breaches for the 90%, 95% and

99% VaRs of SPX and TSX produced by each volatility model for the whole sample period. The

table also shows 95% confidence intervals with lower and upper bounds for the number of allowed

breaches using the Kupiec test. We report the results for VaRs using the Hull and White (1998)

11A common criticism of backtesting is the small expected number of violations if the testing window is not large
enough.
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filtered historical simulations method to make sure that risk is not underestimated compared to

models that use normal distribution.

Table 8 here

The results in Table 8 show that all VaRs that use asymmetric volatility models (GTARCH,

GJR-GARCH and GTARCH0) with various quantiles (q = 90%,95%,99%) pass the Kupiec test

at a 5% significance level for both SPX and TSX. At the same time, we find that the EWMA model

failed the test underestimating risk for both SPX and TSX for each quantile q. The GARCH model

fails the Kupiec test only for SPX data with q = 90% quantile overestimating risk.12

Conditional coverage backtests introduced by Christoffersen and Pelletier (2004) can be added.13

However, past research showed low power of all backtests above (see, e.g., Lopez (1998)). More-

over, backtesting is only concerned with the number of exceptions and their independence. Regu-

lators are also concerned with the magnitude of exceptions (margin shortfall) as well as excessive

procyclicality of VaR models that increase the speed of margin calls at the time of crisis, as will

be discussed in Section 4.3. Recognizing the limitations of backtests, we use the above results in

conjunction with other model validation criteria.

In addition to backtesting we ran realized volatility regressions for assessing model perfor-

mance similar to Corsi (2009) and Bekaert and Hoerova (2014). Table 9 shows one-day-ahead in-

sample performance using the regressions of log realized variance (RV) on log variances estimated

by each model. This table presents the mean square error (MSE), the mean absolute error (MAE)

and Mincer-Zarnowitz (MZ) adjusted R2. Since the spline model has low- and high-frequency

components, both were used for spline model regressions and adjusted R2 are reported. We find
12 We note that if a 1% significance level is used, the GARCH model passes the Kupiec test but the EWMA model

still fails.
13We performed the Christoffersen test as well and found that all models pass the conditional coverage test but

GARCH models fail the independence test at a 5% significance level.
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that the TGARCH model performs better than all other models for SPX using all three statistics:

MSE, MAE and MZ R2. For TSX the results are mixed, with GTARCH and GJR-GARCH models

performing better than other models.

The backtesting results and forecast evaluations using MSE, MAE and MZ R2 statistics re-

inforce the need to use asymmetric volatility models capturing risk aversion to make sure that

margins are set adequately.

Table 9 here

4.3 Procyclicality of the CCP’s Initial Margin Requirements

Central counterparties (CCPs) base their risk management systems on a tiered default waterfall

relying on two types of resources provided by their members: margins and default fund contri-

butions. The initial margins are typically set based on VaR calculations. The CCPs, by acting as

intermediary, have exposure to both the buyer and the seller. Since VaR and ES calculations are

typically volatility-based, the properties of the underlying volatility models such as risk aversion

are essential for setting initial margin requirements.

This section explores the procyclicality of margin requirements based on VaR models and

suggests remedies to reduce procyclicality. On the one hand, there is a need for margins to adjust

to changes in the market and be responsive to risk. Thus, margins increase substantially in times

of stress and go down when volatility is low. However, this practice may produce big changes in

margins when markets are stressed which, in turn, may lead to liquidity shocks. Brunnermeier and

Pedersen (2009) showed that margins can be destabilizing, with stresses in market and funding

liquidity leading to liquidity spirals. In addition, in stable times margins may be too low. CCPs

try to reduce the procyclicality of their models by using various methods, including setting floors

on margin. Some such methods are discussed in white papers produced by the Bank of England
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(Murphy et al. (2016)) and the European Securities and Markets Authority (EMIR) Regulatory

Technical Standards (2015). They suggest several ad hoc tools to create margin buffers and reduce

procyclicality. The first tool is setting a floor margin buffer of 25% or greater to be used in times

of stressed conditions.14

We suggest placing both a floor and a ceiling on margins, by using a threshold autoregressive

model with three regimes, as well as expert judgement based on historical margin settings. For

example, we can evaluate the appropriateness of the suggested 25% margin buffer for maintaining

funding liquidity under a stressed market. We illustrate the use of this method below.

The threshold autoregressive model (TAR) (also called self-exciting threshold model (SETAR))

was first introduced by Tong (1983) and Tong and Lim (1980). A smooth transition model (STAR)

was later developed by Terasvirta (1994).

Consider a time series of logarithm of VaR, yt = log(VaR), with three regimes. A simple

threshold autoregressive model (TAR) with p lags for yt is given by:

yt = φ
j
0 +φ

j
1yt−1 + ...+φ

j
pyt−p + εt (7)

εt ∼ N
(
0, σ

2) ,
where j = 1, ...K with number of regimes K = 3. The regimes are determined by an observable

threshold variable zt−d with delay parameter d and sorted threshold values θ1, ...,θK−1, such that
j = 1 zt−d < θ1,

j = 2 θ1 ≤ zt−d ≤ θ2,

j = 3 zt−d > θ2.

In practice, we use zt−d = yt−d and we set the delay parameter for the threshold variable equal

to one (d = 1). We also use p = 2 for the order of the autoregressive model. Alternatively, these
14Other suggested tools are to assign at least 25% weight to stressed observations, setting a floor based on the

maximum volatility over a 10-year historical look-back period and setting speed limits on how fast the margins can be
raised and lowered.
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parameters as well as the number of regimes K could be found by minimizing information criteria.

While there are various methods15 to estimate this model, the commonly used classical method

is a grid search for optimal thresholds θ1, ...,θK−1 by minimizing the sum of squared residuals.

We estimated a TAR with three regimes (3TAR), and two corresponding thresholds for the

logarithm of VaR for each model. VaR was previously estimated using the Hull and White (1998)

method. We used log(VaR) for estimation of the 3TAR model since log transformation smoothes

the peaks. Then we exponentially transformed the threshold values and reported them in Table 10.

The results for thresholds for all volatility models are given in Table 10 and are presented

graphically as horizontal lines in Figures 9 and 10 for log(VaR) in the Spline-GTARCH model for

SPX and TSX respectively.

Table 10 here

Figures 9 and 10 here

The 3TAR model provides a straightforward method of setting both the floor and the ceiling for

the initial margin that is stable and not too procyclical: the one-day margins are on average bounded

between 1.84% and 2.58% for SPX and between 0.77% and 1.01% for TSX. This way, when

volatility is low the margins are fixed at a conservative floor level that corresponds historically

to about 29% quantile of the lowest margins for SPX, and at the time of market stress they can’t

go above the upper threshold. It is an interesting coincidence that the estimated lower threshold

for SPX using the EWMA model corresponds to the 25% of observations in the lower regime,

as was also suggested by Murphy et al. (2016). For TSX, the margin buffer is a higher 32% of

observations on average. On the other hand, at the time of stress the higher regime thresholds on

15For example, Goldman et al. (2013) introduced a Bayesian method for measuring thresholds and long memory
parameters in a more sophisticated threshold model.
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average correspond to 38% of the observation points for both SPX and TSX, which may not appear

too conservative. One could add here actual historical margins set by CCPs at the time of stress,

to see if the upper bound was historically higher and would have resulted in a lower percentage of

observations for the high regime.16 For comparison we also estimated a three-regime model for the

VaR constructed using realized volatility, which resulted in thresholds of 1.57% and 2.27% for SPX

and 0.52% and 1.02% for TSX. These thresholds result in approximately 25% of observations in

the upper regime, which might be more conservative. Having said this, compared to other models

the VaRs based on realized volatility measures are much more procyclical with higher peaks and

potentially higher margin calls exactly when the market is in distress.

In order to guarantee that the margin floors and ceilings would be sufficient at the time of crisis,

we need to make sure that the time series of VaRs in the regime of high volatility are stationary and

revert back inside the bounds. The unit root test results indicate that all models pass the stability

test for the SPX, while EWMA and all spline models without macroeconomic variables could be

unreliable to set a sustainable ceiling.

We set the floor and the ceiling on the VaR using estimated thresholds in Table 10. If the

margins were allowed to be set within two bounds and the high-volatility regime was not persistent,

margins would be stable. Such policy could also be useful to manage expectations at times of

stressed liquidity. This model is the limiting case for mitigating procyclicality while sacrificing

risk sensitivity.

In order to evaluate initial margin models in addition to the backtesting and volatility forecast

evaluation performed in section 4.2, we minimize a loss function with two competing objectives:

risk sensitivity (model accuracy) and mitigation of procyclicality. We note that in a recent paper

16Actual margins data are confidential and we are not able to make this comparison. However, we use two competing
objectives: risk sensitivity and mitigation of procyclity, when we compute loss functions in Table 11.
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Wong and Ge (2017) used time series similarity relative to a theoretical “regulatory target model”

for measuring the initial margin model performance. We do not use any assumed “correct” model

and minimize loss function while performing a sensitivity analysis of the loss to a different trade-

off parameter w discussed below.

We introduce a parameter 0 ≤ w ≤ 1 that measures the degree of trade-off between these two

objectives. The higher the w, the more weight is given to procyclicality correction with the limiting

case of w = 1. If w = 0 there is no correction of procyclicality and the whole weight is given to

the objective of model accuracy with the most risk-sensitive model. The regulator/CCP may have

different preferences for the trade-off parameter w that may result in more or less model accuracy

versus mitigation of procyclicality.

Let the loss function L(w) be defined as a quadratic measure of margin shortfall. We define the

overall loss function as the weighted sum of two components with trade-off parameter w:

L(w) = (1−w)L1 +wL2. (8)

Here, L1 is the loss for the unconstrained VaR, while L2 is the loss for the Threshold VaR

(TVaR) bounded between the floor and the ceiling estimated in Table 10.

L1 =
T

∑
t=t0

(rt +VaRt)
2 I(rt <−VaRt),

L2 =
T

∑
t=t0

(rt +TVaRt)
2 I(rt <−TVaRt),

where rt is one-day logarithmic return, VaRt is a one-day 99% VaR forecasted for time t, T is

the number of observations in the sample, t0 is the first observation for which a VaR forecast is

available, and I() is an indicator function equal to one when there is a violation of VaR and zero

otherwise.
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Table 11 presents the results of loss functions and the number of violations produced by each

volatility model. Overall ranks for loss functions L1 and L2 are presented in columns 7 and 8. These

ranks correspond to loss L with w = 0 and w = 1 respectively. We also compute loss function in

equation (8) for various other settings of w = .25, .5, .75. We rank the overall loss function within

each group of models: without spline, with spline and with spline and macroeconomic variables.

Ranks for each group using various trade-off parameters w ranging from 0 to 1 are presented in

columns 9-13.

The realized volatility is the most risk-sensitive measure for SPX and it is ranked as #1 for L1.

However, as we observe RV ex-post and do not produce a forecast for it, it is not surprising that

it performs the best.17 18 For the loss L2 with the highest preference for correcting procyclicality

we find that GTARCH0 has the best rank. For each group of models (no spline, spline, spline-

macro), as we increase the trade-off parameter (columns 9-13) we can see that in the beginning,

model ranks change between w = 0 and w = .25, but then ranks are stable for all other weights:

w = .25, .75,1. Thus, the exact value of w is not crucial for model selection and even a small

weight for mitigating procyclicality (.25) produces sufficient information. The best performing

models for SPX in each group using some degree of procyclicality mitigation (w = .25 or above)

are: GTARCH0, Spline-GTARCH and Spline-Macro-GARCH. The best performing models for

TSX in each group are: GTARCH0, Spline-GTARCH0 and Spline-Macro GJR-GARCH.

Table 11 here

With the exception of Spline-Macro-GARCH model for SPX, we find that asymmetric volatil-

ity models in the GTARCH family are generally preferred for trade-off parameters varying from

17In this paper we use RV simply as observable volatility and are not concerned with modeling and forecasting it,
which is extensively studied in the literature.

18Surprisingly, RV for TSX was actually performing worse than other models for L1.
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w = .25 to 1. Adding macroeconomic variables in the GARCH model helps reduce model procy-

clycality.19

The mandatory use of CCPs in certain markets is one of the cornerstone regulations introduced

to prevent another global financial crisis. However, the rules implemented have not been tested

in crisis conditions. Above, we presented a simple approach to test the sustainability of margin

models using a three-regime threshold autoregressive model.

5 Conclusion and Further Development

In this paper we considered asymmetric GARCH models in the threshold GARCH family and

proposed a more general Spline GTARCH model that captures high-frequency return volatility,

low-frequency macroeconomic volatility as well as an asymmetric response to past negative news

in both ARCH and GARCH terms.

Based on maximum likelihood estimation of S&P 500 returns, S&P/TSX returns and the Monte

Carlo numerical example, we found that the proposed more general asymmetric volatility model

has better fit, higher persistence of negative news, higher degree of risk aversion and significant

effects of macroeconomic variables on the low-frequency volatility component.

We then applied a variety of volatility models including asymmetric GARCH, GARCH and

EWMA in setting initial margin requirements for central clearing counterparties (CCPs). Since

VaR and ES calculations are typically volatility-based, the properties of the underlying volatility

models such as risk aversion are essential for setting initial margin requirements.

Finally, we showed how to mitigate procyclicality of initial margins using a three-regime

threshold autoregressive model. We set the floor and the ceiling on the VaR using estimated

19At the same time, simpler models with procyclicality correction may be occasionally preferred to models with
more parameters.
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thresholds. This model is the limiting case for mitigating procyclicality while sacrificing risk

sensitivity. In order to evaluate initial margin models in addition to backtesting and volatility fore-

cast evaluation, we introduced a loss function with two competing objectives: risk sensitivity and

mitigation of procyclicality. The trade-off parameter between these objectives can be selected by

regulator/CCP depending on the specific preferences. We found that asymmetric volatility models

generally perform better under various trade-off parameters.

In future research, more international equity markets can be tested and additional macroeco-

nomic variables can be added to the spline. The VaR bootstrap algorithm can be modified to one

with rolling windows. The multi-day VaR and ES multiplier could be computed using Monte Carlo

simulations. In terms of margin procyclicality mitigation, a three-regime threshold autoregressive

model with changing volatility and a Markov-Switching model with three regimes could be applied

as well.
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Table 1: Definitions of Variables and Data Sources

Definition Frequency Source
US Data
S&P 500 Index Daily (business) CRSP Wharton Database
US federal funds effective rate Daily (business) FEDL01 Index (Bloomberg)
US nominal GDP Quarterly U.S. Department of Commerce, BEA
US CPI, chained Monthly U.S. Bureau of Labor Statistics
Unemployment rate Monthly U.S. Bureau of Labor Statistics
Trade Weighted U.S. Dollar Index: Major Currencies Daily DTWEXM St Louis FED

Canadian Data
S&P/TSX Composite Index Daily (business) SPTSX Index (Bloomberg)
Canadian overnight money market financing rate Daily (business) CAOMRATE Index (Bloomberg)
Canadian nominal GDP Quarterly CANSIM table 380-0064
Canadian CPI Monthly CANSIM table 326-0022
Unemployment rate Monthly CANSIM table 282-0087
Units of USD per CAD Daily(business) CAD-USAD X-RATE-Price (Bloomberg)
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Table 2: Estimation Results for GTARCH Models: SPX and Monte Carlo Example

GTARCH GTARCH0 GJR-GARCH GARCH
Parm unconstrained constrained unconstrained constrained unconstrained constrained unconstrained constrained

parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std

Panel A: SPX Results

µ 0.0076 (0.0126) 0.0003 (0.0000) 0.0256 (0.0126) 0.0006 (0.0000) 0.0164 (0.0137) 0.0184 (0.0134) 0.0546 (0.0130) 0.0546 (0.0140)
ω 0.0218 (0.0029) 0.0226 (0.0037) 0.0220 (0.0030) 0.0226 (0.0031) 0.0227 (0.0032) 0.0238 (0.0039) 0.0238 (0.0039) 0.0238 (0.0040)
α 0.0007 (0.0081) 0.0000 (0.0130) 0.0833 (0.0085) 0.0780 (0.0082) -0.0139 (0.0069) 0.0000 (0.0194) 0.1015 (0.0110) 0.1015 (0.0110)
β 0.8357 (0.0153) 0.8374 (0.0187) 0.7823 (0.0150) 0.7887 (0.0153) 0.8978 (0.0114) 0.8879 (0.0187) 0.8755 (0.0123) 0.8755 (0.0125)
γ 0.1370 (0.0173) 0.1398 (0.0197) 0.1849 (0.0189) 0.1745 (0.0213)
δ 0.1634 (0.0240) 0.1596 (0.0248) 0.2460 (0.0237) 0.2485 (0.0246)

Persistence 0.9866 0.9871 0.9886 0.9909 0.9763 0.9752 0.9770 0.9770
BIC 2.3232 2.3239 2.3444 2.3442 2.3344 2.3353 2.3714 2.3714
AIC 2.3126 2.3133 2.3356 2.3354 2.3256 2.3265 2.3644 2.3644

Panel B: Monte Carlo Simulations

µ 0.0076 0.0030 (0.0395) 0.0100 (0.0111) 0.0196 (0.0156) 0.0205 (0.0135) 0.0145 (0.0150) 0.0164 (0.0129) 0.0594 (0.0129) 0.0592 (0.0131)
ω 0.0218 0.0275 (0.0516) 0.0222 (0.0027) 0.0244 (0.0229) 0.0221 (0.0036) 0.0231 (0.0037) 0.0231 (0.0036) 0.0262 (0.0057) 0.0259 (0.0062)
α 0.0007 0.0026 (0.0227) 0.0039 (0.0058) 0.0725 (0.0090) 0.0728 (0.0098) -0.0095 (0.0046) 0.0006 (0.0022) 0.1282 (0.0139) 0.1267 (0.0188)
β 0.8357 0.8290 (0.0622) 0.8313 (0.0121) 0.7691 (0.0627) 0.7749 (0.0155) 0.8911 (0.0183) 0.8841 (0.0177) 0.8539 (0.0141) 0.8555 (0.0202)
γ 0.1370 0.1375 (0.0177) 0.1342 (0.0138) 0.0145 (0.0104) 0.0164 (0.0086)
δ 0.1634 0.1612 (0.0392) 0.1676 (0.0224) 0.2669 (0.0454) 0.2710 (0.0240)

Persistence 0.9866 0.9809 0.9860 0.9751 0.9832 0.8888 0.8929 0.9821 0.9822
BIC 2.3869 2.3812 2.4094 2.3997 2.3932 2.3939 2.4394 2.4418
AIC 2.3763 2.3707 2.4006 2.3909 2.3844 2.3851 2.4323 2.4347

Notes: Panel A presents the results of estimation of GTARCH models for SPX data between 10/08/2002 and 12/30/2016 with 3500
observations. Panel B presents results of Monte Carlo simuations using parameters of estimated SPX model for data generating
processes. We used a sample size of N=5000 and 500 replications.
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Table 3: Estimation Results for GTARCH, Spline-GTARCH and Spline-Macro-GTARCH Models: SPX
Parm GTARCH GTARCH0 GJR-GARCH GARCH

SMacro Spline No Spline SMacro Spline No Spline SMacro Spline No Spline SMacro Spline No Spline
parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std

µ 0.013 (0.015) 0.008 (0.015) 0.000 (0.000) -0.726 (0.154) 0.026 (0.014) 0.001 (0.000) 0.028 (0.013) 0.025 (0.012) 0.018 (0.013) 0.058 (0.013) 0.058 (0.013) 0.055 (0.014)
ω 0.023 (0.004) 0.022 (0.003) 0.023 (0.003) 0.023 (0.003)
α 0.000 (0.023) 0.000 (0.022) 0.000 (0.013) 0.061 (0.018) 0.065 (0.006) 0.078 (0.008) 0.000 (0.000) 0.000 (0.000) 0.000 (0.019) 0.089 (0.010) 0.097 (0.009) 0.102 (0.011)
β 0.781 (0.030) 0.771 (0.028) 0.837 (0.019) 0.729 (0.033) 0.734 (0.015) 0.789 (0.015) 0.841 (0.016) 0.840 (0.013) 0.888 (0.019) 0.826 (0.018) 0.833 (0.015) 0.875 (0.012)
γ 0.122 (0.023) 0.131 (0.025) 0.140 (0.020) 0.177 (0.020) 0.189 (0.017) 0.175 (0.021)
δ 0.230 (0.035) 0.243 (0.033) 0.160 (0.025) 0.316 (0.031) 0.310 (0.025) 0.249 (0.025)
c 0.936 (0.289) 2.718 (0.222) 0.846 (0.513) 1.800 (0.300) 0.754 (0.193) 2.246 (0.418) 0.640 (0.158) 1.873 (0.373)

w1 -0.711 (0.118) -1.973 (0.236) -0.726 (0.154) -1.454 (0.370) -0.760 (0.106) -2.215 (0.426) -0.753 (0.107) -1.994 (0.462)
w2 0.854 (0.251) 4.110 (0.626) 0.821 (0.448) 2.860 (1.030) 1.032 (0.241) 4.587 (1.211) 0.891 (0.222) 4.196 (1.281)
w3 2.106 (0.567) -2.430 (0.712) 2.365 (0.838) -1.300 (1.157) 1.854 (0.618) -2.706 (1.591) 2.301 (0.566) -2.589 (1.516)
w4 -4.443 (0.743) -0.008 (0.700) -4.796 (0.936) -0.894 (0.900) -4.267 (0.804) 0.185 (1.765) -4.759 (0.759) 0.099 (1.424)
w5 2.831 (0.455) 1.669 (0.679) 2.918 (0.468) 2.948 (0.872) 2.752 (0.486) 1.645 (1.704) 2.917 (0.464) 2.109 (1.436)
w6 -1.002 (0.398) -1.607 (0.687) -0.872 (0.569) -3.167 (1.101) -0.972 (0.380) -2.343 (1.519) -0.964 (0.353) -2.689 (1.521)
w7 0.736 (0.527) 1.628 (1.152) 0.651 (0.791) 3.230 (1.157) 0.837 (0.405) 3.429 (1.782) 0.911 (0.365) 3.071 (1.652)
w8 -0.859 (0.728) -5.859 (1.744) -1.153 (1.161) -7.984 (1.153) -1.130 (0.559) -9.085 (2.101) -1.532 (0.506) -8.526 (2.104)
w9 6.568 (1.585) 8.707 (0.996) 10.785 (1.950) 10.411 (2.108)
w10 -1.421 (0.907) -2.060 (0.763) -5.566 (1.875) -4.571 (1.650)
w11 -1.728 (0.815) -2.658 (0.803) 2.000 (2.214) 0.363 (1.501)
w12 1.752 (0.815) 2.842 (0.783) -1.081 (2.132) -0.282 (1.476)
w13 -1.128 (0.782) -1.278 (1.194) 0.239 (1.876) 0.904 (1.412)
w14 0.175 (0.796) -0.011 (1.153) -0.013 (1.834) -0.960 (1.667)
w15 2.089 (1.145) 1.689 (1.088) 1.971 (2.014) 2.481 (1.911)
w16 -3.193 (1.194) -3.076 (1.212) -3.218 (2.222) -4.310 (1.951)
w17 0.005 (1.105) 0.523 (1.220) -0.201 (2.488) 1.848 (2.378)

In f lation 0.084 (0.109) 0.081 (0.150) 0.112 (0.103) 0.062 (0.092)
In f lationV -1.309 (0.829) -1.983 (0.748) -1.190 (1.150) -1.983 (1.122)
InterestR 0.675 (0.152) 0.749 (0.165) 0.666 (0.152) 0.768 (0.149)

InterestRV 2.077 (1.166) 2.050 (2.079) 4.326 (2.033) 4.972 (1.541)
unempV -1.456 (0.779) -5.099 (1.911) -5.132 (4.081) -6.893 (3.957)
USDV 0.992 (0.332) 1.176 (0.329) 1.028 (0.315) 1.167 (0.305)
GDP -0.218 (0.088) -0.250 (0.154) -0.245 (0.087) -0.269 (0.076)
GDPV 0.224 (0.216) 0.500 (0.247) 0.403 (0.235) 0.601 (0.231)

Persistence 0.957 0.958 0.987 0.948 0.953 0.991 0.929 0.935 0.975 0.915 0.930 0.977
BIC 2.330 2.333 2.324 2.350 2.357 2.344 2.343 2.346 2.335 2.382 2.390 2.371
AIC 2.291 2.292 2.313 2.313 2.319 2.336 2.308 2.309 2.335 2.347 2.353 2.326

Notes: This table presents the results of all volatility models for SPX. SPX data are for the period between 10/08/2002 and 12/30/2016.
The sample size is 3500 observations. Only results with positivity constraints are reported. In addition to volatility models presented
in the table, we estimated the EWMA model that resulted in a smoothing parameter estimate and standard error given in parentheses:
λ = 0.9409 (0.0049) and information criteria: AIC = 2.7262,BIC = 2.7279.
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Table 4: Estimation Results for GTARCH, Spline-GTARCH and Spline-Macro-GTARCH Models: TSX
Parm GTARCH GTARCH0 GJR-GARCH GARCH

SMacro Spline No Spline SMacro Spline No Spline SMacro Spline No Spline SMacro Spline No Spline
parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std parm Std

µ 0.013 (0.006) 0.010 (0.005) 0.000 (0.000) -1.256 (0.772) 0.016 (0.005) 0.000 (0.000) 0.016 (0.005) 0.015 (0.005) 0.014 (0.005) 0.026 (0.005) 0.025 (0.005) 0.024 (0.005)
ω 0.002 (0.000) 0.002 (0.000) 0.003 (0.001) 0.002 (0.001)
α 0.000 (0.062) 0.000 (0.011) 0.019 (0.009) 0.045 (0.010) 0.046 (0.005) 0.058 (0.007) 0.000 (0.000) 0.000 (0.000) 0.010 (0.009) 0.077 (0.008) 0.099 (0.010) 0.085 (0.010)
β 0.826 (0.058) 0.841 (0.014) 0.869 (0.013) 0.796 (0.023) 0.808 (0.020) 0.844 (0.013) 0.861 (0.015) 0.872 (0.013) 0.914 (0.011) 0.838 (0.017) 0.890 (0.011) 0.902 (0.012)
γ 0.079 (0.047) 0.076 (0.016) 0.069 (0.015) 0.122 (0.013) 0.130 (0.016) 0.107 (0.015)
δ 0.168 (0.031) 0.192 (0.022) 0.137 (0.024) 0.227 (0.045) 0.239 (0.026) 0.194 0.000
c 1.334 (0.362) 0.871 (0.122) 1.314 (1.305) 0.713 (0.095) 0.530 (0.113) 0.466 (0.063) 0.736 (0.038) 0.962 (0.094)

w1 -1.332 (0.218) -0.674 (0.140) -1.256 (0.772) -0.632 (0.218) -0.805 (0.330) -0.286 (0.252) -0.783 (0.241) -0.418 (0.506)
w2 3.000 (0.437) 2.026 (0.314) 2.911 (1.450) 1.938 (0.636) 1.466 (0.854) 0.722 (0.798) 1.308 (0.669) 1.117 (1.509)
w3 -0.468 (0.492) -1.882 (0.498) -0.408 (1.480) -1.692 (0.681) 1.060 (1.104) -0.029 (1.165) 1.662 (0.863) -0.373 (1.732)
w4 -4.362 (0.980) 0.370 (0.985) -4.445 (6.642) 0.235 (0.544) -5.151 (1.582) -1.166 (1.343) -5.982 (1.057) -0.668 (1.844)
w5 5.727 (1.627) 0.738 (1.138) 5.771 (10.502) 0.605 (0.772) 6.368 (1.716) 1.635 (1.373) 6.999 (1.298) 0.440 (2.174)
w6 -1.189 (1.090) 0.564 (0.773) -1.575 (4.702) 0.474 (1.171) -0.871 (1.125) 0.173 (1.283) -2.058 (1.531) 1.001 (1.863)
w7 -6.600 (1.753) -5.860 (1.009) -5.827 (3.282) -5.225 (1.311) -8.453 (2.149) -5.863 (1.389) -6.957 (2.570) -5.400 (1.665)
w8 8.539 (1.679) 8.342 (1.637) 7.997 (1.943) 7.426 (1.262) 10.000 (1.689) 8.688 (1.551) 9.785 (2.378) 7.829 (1.922)
w9 -3.104 (0.968) -4.116 (1.457) -2.804 (3.835) -3.014 (1.217) -3.269 (1.066) -4.278 (1.481) -3.972 (1.353) -3.860 (1.928)
w10 -1.983 (0.993) -0.486 (1.081) -2.405 (4.409) -1.745 (0.998) -2.301 (1.086) -1.089 (1.386) -1.900 (0.982) -1.057 (1.910)
w11 3.062 (1.029) 2.021 (0.868) 3.600 (3.912) 3.212 (1.035) 3.018 (1.252) 2.575 (1.351) 3.009 (1.007) 2.359 (2.149)
w12 -2.623 (0.880) -1.660 (0.744) -2.871 (2.801) -2.686 (1.083) -1.785 (1.251) -1.462 (1.340) -1.866 (1.072) -1.136 (2.138)
w13 4.839 (1.106) 1.716 (0.739) 4.603 (3.546) 3.417 (0.950) 3.933 (1.325) 2.481 (1.643) 4.095 (1.268) 1.975 (2.456)
w14 -7.824 (1.689) -1.846 (0.908) -7.622 (4.738) -5.281 (0.866) -7.644 (1.583) -5.155 (1.943) -8.343 (1.480) -4.909 (2.715)
w15 8.409 (2.383) 0.286 (0.999) 8.602 (6.186) 4.938 (1.715) 8.482 (2.208) 4.835 (2.432) 10.000 (1.696) 5.256 (3.321)
w16
w17

In f lation -0.191 (0.145) -0.281 (0.138) -0.263 (0.125) -0.395 (0.105)
In f lationV -10.000 (2.537) -9.358 (19.123) -9.413 (3.119) -10.000 (1.798)
InterestR 0.163 (0.140) 0.119 (1.013) 0.332 (0.140) 0.191 (0.091)

InterestRV -2.888 (1.116) -2.279 (6.446) -0.806 (1.012) -6.055 (1.211)
unempV 1.604 (1.196) 0.853 (2.361) 1.197 (1.172) 5.960 (4.520)

USDCADV 0.412 (0.143) 0.417 (0.148) 0.501 (0.137) 0.578 (0.107)
GDP -0.036 (0.054) -0.036 (0.063) -0.023 (0.040) -0.032 (0.034)
GDPV 0.057 (0.059) 0.048 (0.240) 0.028 (0.044) -0.022 (0.060)

Persistence 0.949 0.974 0.991 0.955 0.974 0.999 0.922 0.938 0.978 0.915 0.989 0.987
BIC 2.326 2.313 2.306 2.337 2.324 2.312 2.332 2.321 2.312 2.354 2.373 2.327
AIC 2.275 2.276 2.296 2.287 2.289 2.303 2.284 2.288 2.303 2.307 2.340 2.320

Notes: This table presents the results of all volatility models for TSX. TSX data are for the period between 03/17/2003 and 03/31/2017.
The sample size is 3500 observations. Only results with positivity constraints are reported. In addition to volatility models presented
in the table, we estimated the EWMA model that resulted in a smoothing parameter estimate and standard error given in parentheses:
λ = 0.9369 (0.0055) and information criteria: AIC = 2.8222,BIC = 2.8240.
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Table 5: Degree of Risk Aversion: SPX and TSX

GTARCH GTARCH0 GJR-GARCH GARCH EWMA RV
SPX Spline+Macro -0.726 -0.57 -0.658 -0.158

Spline -0.764 -0.6 -0.659 -0.183
No Spline -0.755 -0.544 -0.659 -0.192 -0.146 -0.111

TSX Spline+Macro -0.744 -0.614 -0.628 -0.213
Spline -0.762 -0.638 -0.661 -0.245

No Spline -0.715 -0.584 -0.632 -0.255 -0.190 -0.057

Notes: This table presents the correlation between returns rt and log difference of fitted conditional
variance log(σ2

t /σ2
t−1) for each model. The last column presents correlation results for realized

volatility (RV) estimate of σt . The more negative correlation implies higher degree of risk aversion
in the model.
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Table 6: Forecasts of Volatility and Tail Risk: Low Volatility

GTARCH GTARCH0 GJR-GARCH GARCH EWMA
Forecast SMacro Spline NoSpline SMacro Spline NoSpline SMacro Spline NoSpline SMacro Spline NoSpline

Panel A: SPX t = December 30, 2016
t+1day 10.841 9.656 10.875 9.409 8.399 10.762 10.383 9.328 10.178 9.116 8.481 9.615 8.044

σ t+2day 10.949 9.717 11.065 9.468 8.437 10.976 10.516 9.391 10.345 9.256 8.595 9.814
t+3day 11.051 9.775 11.249 9.524 8.473 11.183 10.638 9.450 10.506 9.382 8.699 10.004

VaR1day q = 90% 0.867 0.772 0.854 0.771 0.683 0.849 0.858 0.765 0.820 0.759 0.713 0.787 0.647
q = 95% 1.185 1.065 1.199 1.033 0.930 1.179 1.138 1.032 1.113 0.995 0.947 1.073 0.892
q = 99% 1.822 1.647 1.842 1.601 1.430 1.841 1.741 1.550 1.735 1.540 1.436 1.655 1.414

VaR2day q = 90% 1.226 1.092 1.208 1.090 0.966 1.201 1.214 1.082 1.160 1.074 1.008 1.113
q = 95% 1.675 1.506 1.696 1.461 1.315 1.668 1.610 1.459 1.574 1.407 1.339 1.518
q = 99% 2.576 2.330 2.605 2.264 2.022 2.604 2.462 2.192 2.454 2.178 2.030 2.341

VaR3day q = 90% 1.501 1.338 1.480 1.335 1.183 1.471 1.486 1.325 1.421 1.315 1.235 1.363
q = 95% 2.052 1.844 2.077 1.789 1.611 2.043 1.971 1.787 1.928 1.723 1.640 1.859
q = 99% 3.155 2.853 3.190 2.773 2.476 3.189 3.015 2.685 3.006 2.667 2.487 2.867

ES1day q = 90% 0.963 0.858 0.949 0.856 0.759 0.944 0.953 0.850 0.911 0.844 0.792 0.875 0.719
q = 95% 1.247 1.121 1.262 1.087 0.979 1.241 1.198 1.086 1.171 1.047 0.997 1.130 0.939
q = 99% 1.840 1.664 1.861 1.617 1.444 1.860 1.758 1.566 1.753 1.556 1.450 1.672 1.429

ES2day q = 90% 1.362 1.214 1.342 1.211 1.073 1.335 1.348 1.202 1.289 1.193 1.120 1.237
q = 95% 1.764 1.585 1.785 1.538 1.384 1.756 1.694 1.536 1.657 1.481 1.410 1.597
q = 99% 2.602 2.353 2.631 2.287 2.042 2.630 2.487 2.215 2.479 2.200 2.051 2.364

ES3day q = 90% 1.668 1.486 1.644 1.483 1.314 1.635 1.651 1.472 1.579 1.461 1.372 1.515
q = 95% 2.160 1.941 2.186 1.883 1.696 2.150 2.075 1.881 2.029 1.814 1.727 1.956
q = 99% 3.187 2.882 3.223 2.801 2.501 3.222 3.046 2.712 3.036 2.694 2.512 2.896

Panel B: TSX t = March 31, 2017
t+1day 4.111 3.711 4.273 4.018 3.679 4.132 4.108 3.659 4.262 4.089 3.625 4.011 3.627

σ t+2day 4.149 3.738 4.325 4.073 3.724 4.191 4.133 3.666 4.290 4.142 3.653 4.052
t+3day 4.184 3.764 4.375 4.126 3.767 4.250 4.157 3.672 4.317 4.190 3.680 4.093

VaR1day q = 90% 0.344 0.307 0.346 0.335 0.307 0.339 0.336 0.308 0.356 0.351 0.310 0.340 0.299
q = 95% 1.185 0.413 0.472 0.454 0.414 0.456 0.461 0.413 0.478 0.474 0.416 0.459 0.410
q = 99% 1.822 0.611 0.724 0.685 0.625 0.722 0.681 0.625 0.743 0.720 0.636 0.728 0.646

VaR2day q = 90% 1.226 0.434 0.490 0.473 0.434 0.479 0.475 0.436 0.503 0.496 0.438 0.481
q = 95% 1.675 0.583 0.668 0.642 0.585 0.644 0.653 0.584 0.677 0.670 0.588 0.648
q = 99% 2.576 0.865 1.024 0.968 0.883 1.021 0.963 0.884 1.050 1.018 0.900 1.029

VaR3day q = 90% 1.501 0.531 0.600 0.580 0.532 0.587 0.582 0.533 0.616 0.608 0.536 0.589
q = 95% 2.052 0.715 0.818 0.787 0.717 0.789 0.799 0.715 0.829 0.821 0.720 0.794
q = 99% 3.155 1.059 1.254 1.186 1.082 1.251 1.180 1.083 1.286 1.247 1.102 1.261

ES1day q = 90% 0.382 0.341 0.385 0.372 0.341 0.377 0.379 0.342 0.395 0.390 0.344 0.378 0.332
q = 95% 0.481 0.434 0.497 0.478 0.436 0.480 0.493 0.435 0.504 0.499 0.438 0.483 0.432
q = 99% 0.688 0.618 0.731 0.692 0.631 0.729 0.699 0.632 0.750 0.727 0.643 0.735 0.653

ES2day q = 90% 0.541 0.482 0.544 0.526 0.482 0.533 0.535 0.484 0.559 0.552 0.487 0.535
q = 95% 0.680 0.614 0.703 0.676 0.616 0.678 0.697 0.615 0.712 0.705 0.619 0.683
q = 99% 0.973 0.873 1.034 0.978 0.892 1.032 0.988 0.893 1.061 1.028 0.909 1.040

ES3day q = 90% 0.662 0.590 0.667 0.644 0.591 0.652 0.656 0.593 0.685 0.676 0.596 0.655
q = 95% 0.832 0.752 0.861 0.828 0.755 0.831 0.854 0.753 0.872 0.864 0.758 0.836
q = 99% 1.192 1.070 1.267 1.198 1.093 1.263 1.210 1.094 1.299 1.259 1.114 1.273

Notes: This table presents 1- to 3-day forecasts of volatility, VaR and ES produced by each volatility model for SPX and TSX at the time
of low volatility. VaR and ES were estimated using the Hull and White (1998) method.
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Table 7: Forecasts of Volatility and Tail Risk: High Volatility

GTARCH GTARCH0 GJR-GARCH GARCH EWMA
Forecast SMacro Spline NoSpline SMacro Spline NoSpline SMacro Spline NoSpline SMacro Spline NoSpline

Panel A: SPX t = November 11, 2008
t+1day 84.678 88.806 91.214 79.610 79.724 83.340 77.198 80.449 81.014 62.656 64.261 66.241 71.063

σ t+2day 83.405 87.345 90.654 78.561 78.529 82.996 75.390 78.526 80.039 61.794 63.063 65.520
t+3day 82.168 85.924 90.098 77.553 77.374 82.654 73.670 76.685 79.077 60.994 61.927 64.808

VaR1day q = 90% 6.771 7.130 7.385 6.562 6.628 6.787 6.412 6.669 6.611 5.285 5.451 5.560 5.717
q = 95% 9.044 9.726 10.119 8.475 8.683 9.138 8.113 8.845 8.893 6.581 7.205 7.490 7.881
q = 99% 13.050 14.461 14.558 12.886 12.585 13.962 11.703 12.163 12.726 9.714 9.938 10.608 12.494

VaR2day q = 90% 9.575 10.083 10.444 9.280 9.373 9.599 9.068 9.431 9.350 7.475 7.709 7.863
q = 95% 12.791 13.755 14.311 11.986 12.280 12.923 11.473 12.508 12.577 9.307 10.189 10.593
q = 99% 18.455 20.451 20.589 18.223 17.799 19.746 16.550 17.202 17.997 13.738 14.054 15.001

VaR3day q = 90% 11.727 12.349 12.792 11.365 11.480 11.756 11.106 11.551 11.451 9.155 9.441 9.630
q = 95% 15.665 16.846 17.527 14.679 15.040 15.828 14.052 15.320 15.404 11.399 12.479 12.973
q = 99% 22.603 25.048 25.216 22.319 21.799 24.183 20.270 21.068 22.042 16.825 17.213 18.373

ES1day q = 90% 7.523 7.922 8.206 7.291 7.364 7.541 7.124 7.410 7.346 5.873 6.057 6.177 6.352
q = 95% 9.520 10.238 10.652 8.921 9.140 9.619 8.540 9.310 9.361 6.928 7.584 7.884 8.296
q = 99% 13.181 14.607 14.705 13.016 12.713 14.103 11.821 12.286 12.855 9.812 10.038 10.715 12.620

ES2day q = 90% 10.639 11.203 11.605 10.311 10.414 10.665 10.075 10.479 10.388 8.305 8.565 8.736
q = 95% 13.464 14.479 15.064 12.616 12.926 13.604 12.077 13.167 13.239 9.797 10.725 11.150
q = 99% 18.641 20.658 20.797 18.407 17.978 19.945 16.717 17.375 18.179 13.877 14.196 15.153

ES3day q = 90% 13.030 13.721 14.213 12.628 12.755 13.062 12.340 12.834 12.723 10.172 10.490 10.700
q = 95% 16.490 17.733 18.449 15.452 15.832 16.661 14.792 16.126 16.214 11.999 13.136 13.656
q = 99% 22.831 25.301 25.471 22.544 22.019 24.428 20.474 21.280 22.265 16.995 17.387 18.558

Panel B: TSX t = September 16, 2008
t+1day 16.305 17.452 14.694 15.233 16.265 13.449 17.229 17.760 15.724 15.911 16.287 14.554 13.363

σ t+2day 16.149 17.404 14.649 15.183 16.295 13.459 16.913 17.541 15.570 15.760 16.218 14.477
t+3day 15.999 17.358 14.604 15.135 16.325 13.469 16.617 17.333 15.417 15.621 16.152 14.400

VaR1day q = 90% 1.322 1.366 1.183 1.236 1.319 1.091 1.388 1.415 1.279 1.313 1.330 1.210 1.101
q = 95% 1.185 1.862 1.648 1.657 1.749 1.533 1.880 1.936 1.771 1.785 1.827 1.660 1.511
q = 99% 1.822 2.794 2.573 2.486 2.689 2.377 2.856 2.834 2.810 2.706 2.625 2.648 2.382

VaR2day q = 90% 1.226 1.933 1.674 1.748 1.865 1.543 1.963 2.002 1.808 1.857 1.880 1.711
q = 95% 1.675 2.634 2.331 2.344 2.473 2.169 2.658 2.738 2.504 2.524 2.584 2.347
q = 99% 2.576 3.951 3.639 3.515 3.803 3.361 4.039 4.008 3.974 3.827 3.713 3.745

VaR3day q = 90% 1.501 2.367 2.050 2.141 2.284 1.890 2.404 2.451 2.215 2.274 2.303 2.096
q = 95% 2.052 3.225 2.855 2.870 3.029 2.656 3.256 3.354 3.067 3.091 3.165 2.875
q = 99% 3.155 4.838 4.456 4.306 4.658 4.117 4.947 4.908 4.867 4.687 4.547 4.587

ES1day q = 90% 1.469 1.518 1.315 1.373 1.465 1.213 1.393 1.573 1.421 1.459 1.477 1.344 1.223
q = 95% 1.855 1.960 1.735 1.744 1.841 1.614 1.930 2.038 1.864 1.879 1.923 1.747 1.590
q = 99% 2.595 2.822 2.599 2.511 2.717 2.401 2.880 2.862 2.838 2.734 2.652 2.675 2.406

ES2day q = 90% 2.077 2.147 1.859 1.942 2.072 1.715 1.970 2.224 2.009 2.063 2.089 1.901
q = 95% 2.624 2.772 2.454 2.467 2.604 2.283 2.729 2.882 2.636 2.657 2.720 2.471
q = 99% 3.670 3.991 3.675 3.551 3.842 3.395 4.073 4.048 4.014 3.866 3.750 3.783

ES3day q = 90% 2.544 2.630 2.277 2.379 2.538 2.100 2.412 2.724 2.461 2.527 2.559 2.329
q = 95% 3.214 3.395 3.005 3.021 3.189 2.796 3.342 3.530 3.228 3.254 3.331 3.026
q = 99% 4.495 4.887 4.501 4.349 4.705 4.158 4.988 4.958 4.916 4.735 4.593 4.633

Notes: This table presents 1- to 3-day forecasts of volatility, VaR and ES produced by each volatility model for SPX and TSX at the time
of high volatility. VaR and ES were estimated using the Hull and White (1998) method.
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Table 8: Backtesting for SPX and TSX VaR Models

Upper and lower bound from the Kupiec Test
Breaches allowed at 95% CI LB UB

VaRQ90 310 350
VaRQ95 146 175
VaRQ99 22 35

Breaches for SPX Data
GTARCH GTARCH0 GJR-GARCH GARCH EWMA

Spline 90% VaR 343 336 336 307
95% VaR 169 166 167 160
99% VaR 32 33 33 29

Spline + Macro Variable 90% VaR 336 327 326 308
95% VaR 171 167 166 160
99% VaR 34 29 32 30

No Spline 90% VaR 336 327 326 308 354
95% VaR 171 167 166 160 176
99% VaR 34 29 32 30 36

Breaches for TSX Data
GTARCH GTARCH0 GJR-GARCH GARCH EWMA

Spline 90% VaR 341 328 327 321
95% VaR 168 163 162 155
99% VaR 34 32 31 30

Spline + Macro Variable 90% VaR 330 329 332 312
95% VaR 164 152 162 151
99% VaR 33 33 33 27

No Spline 90% VaR 330 329 332 312 356
95% VaR 164 152 162 151 182
99% VaR 33 33 33 27 36

Notes: This table presents the number of backtest breaches for VaR of SPX and TSX produced by each volatility model. VaR was
estimated using the Hull and White (1998) method.
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Table 9: One-day-ahead in-sample performance using log realized variance: SPX and TSX

Model MSE MAE R2

Panel A: SPX Data

No Spline GTARCH 0.106 0.252 0.635
GTARCH0 0.113 0.260 0.612
GJR-GARCH 0.107 0.253 0.632
GARCH 0.119 0.267 0.592
EWMA 0.130 0.280 0.553

Spline + GTARCH 0.096 0.241 0.671
GTARCH0 0.106 0.254 0.635
GJR-GARCH 0.097 0.241 0.666
GARCH 0.112 0.261 0.613

Spline + GTARCH 0.095 0.240 0.673
Macro GTARCH0 0.107 0.256 0.631
Variables GJR-GARCH 0.097 0.241 0.665

GARCH 0.114 0.262 0.609
Panel B: TSX Data

No Spline GTARCH 0.108 0.256 0.661
GTARCH0 0.113 0.263 0.642
GJR-GARCH 0.109 0.257 0.662
GARCH 0.115 0.266 0.631
EWMA 0.122 0.274 0.601

Spline + GTARCH 0.114 0.264 0.667
GTARCH0 0.115 0.266 0.646
GJR-GARCH 0.110 0.258 0.673
GARCH 0.114 0.263 0.636

Spline + GTARCH 0.109 0.258 0.656
Macro GTARCH0 0.112 0.261 0.636
Variables GJR-GARCH 0.106 0.253 0.653

GARCH 0.110 0.258 0.621

Notes: This table presents the mean square error (MSE), the mean absolute error (MAE) and
Mincer-Zarnowitz (MZ) adjusted R2 for the regressions of log realized variance (RV) on log vari-
ances estimated by each model above. Since the spline model has low- and high-frequency com-
ponents, both were used for spline models regressions and adjusted R2 are reported. The number
of observations for the RV was slightly smaller and the resulting sample is: 3487 observations for
SPX and 3480 observations for TSX.
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Table 10: Threshold Regimes: SPX and TSX

Model Thresholds (in %) Proportion Unit Root
Low regime Middle regime High regime Low regime Middle regime High regime

Panel A: SPX Data

No Spline GTARCH 1.90 2.44 33% 25% 42% NO NO NO
GTARCH0 1.91 2.95 30% 41% 28% NO NO NO
GJR-GARCH 1.88 2.39 31% 25% 44% NO NO NO
GARCH 1.93 2.47 27% 29% 44% NO NO NO
EWMA 1.82 2.90 25% 44% 31% NO NO NO
Average 1.89 2.63 29% 33% 38%

Spline GTARCH 1.74 2.66 26% 39% 35% NO NO NO
GTARCH0 1.92 2.47 33% 26% 41% NO NO NO
GJR-GARCH 1.87 2.47 36% 26% 38% NO NO NO
GARCH 1.86 2.29 27% 25% 48% NO NO NO
Average 1.85 2.48 31% 29% 40%

Spline + GTARCH 1.74 2.74 28% 40% 32% NO NO NO
Macro GTARCH0 1.78 2.74 25% 41% 34% NO NO NO
Variables GJR-GARCH 1.74 2.18 26% 25% 49% NO NO NO

GARCH 1.85 2.85 27% 43% 30% NO NO NO
Average 1.78 2.63 26% 37% 36%

Overall Average 1.84 2.58 29% 33% 38%

Realized Vol 1.57 2.27 49% 25% 26% NO NO NO
Panel B: TSX Data

No Spline GTARCH 0.74 0.97 29% 29% 42% NO NO NO
GTARCH0 0.77 1.10 27% 41% 32% NO NO NO
GJR-GARCH 0.74 1.01 26% 33% 40% NO NO NO
GARCH 0.83 1.05 32% 29% 40% NO NO NO
EWMA 0.79 1.02 34% 26% 40% NO YES YES
Average 0.77 1.03 30% 32% 39%

Spline GTARCH 0.73 0.94 33% 26% 41% NO YES YES
GTARCH0 0.87 1.15 48% 25% 27% NO YES YES
GJR-GARCH 0.71 0.93 26% 30% 44% NO YES YES
GARCH 0.74 0.95 25% 27% 48% NO YES YES
Average 0.76 0.99 33% 27% 40%

Spline + GTARCH 0.82 1.12 47% 26% 27% NO YES NO
Macro GTARCH0 0.82 1.04 41% 26% 33% NO YES NO
Variables GJR-GARCH 0.70 0.87 25% 27% 47% NO NO NO

GARCH 0.75 1.05 26% 39% 36% NO YES NO
Average 0.77 1.02 35% 29% 36%

Overall Average 0.77 1.01 32% 29% 38%

Realized Vol 0.52 1.02 25% 49% 25% NO NO NO

Notes: This table presents results of the three-regime threshold autoregressive (3TAR) model ap-
plied to VaR produced by each volatility model for SPX and TSX. VaR was estimated using the
Hull and White (1998) method. In the last row of each panel we present the results of applying
the 3TAR model to VaR using realized volatility (RV) and the Hull and White (1998) method. The
number of observations for the RV was slightly smaller than for daily returns: 3487 observations
for SPX and 3480 observations for TSX.
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Table 11: Loss Functions: SPX and TSX

Model L1 # violations L2 # violations Rank for L1 Rank for L2 Group Ranks
w=0 w=0.25 w=0.5 w=0.75 w=1

Panel A: SPX Data
No Spline GTARCH 22.39 34 374.55 100 8 10 3 4 4 4 4

GTARCH0 25.40 34 275.26 71 13 1 5 1 1 1 1
GJR-GARCH 20.23 31 386.80 104 5 11 2 6 5 5 5
GARCH 24.95 32 367.14 97 12 8 4 5 3 3 3
EWMA 33.54 35 285.47 77 14 2 6 2 2 2 2
Realized Volatility 2.23 28 414.19 119 1 13 1 3 6 6 6

Spline GTARCH 19.18 32 328.41 85 3 6 2 1 1 1 1
GTARCH0 20.82 33 366.29 97 6 7 3 3 3 2 2
GJR-GARCH 18.09 33 367.75 99 2 9 1 2 2 3 3
GARCH 22.25 29 410.60 115 7 12 4 4 4 4 4

Spline + GTARCH 22.72 33 313.90 81 9 5 2 3 3 3 3
Macro GTARCH0 23.13 28 311.95 80 10 4 3 2 2 2 2
Variables GJR-GARCH 19.37 31 442.11 124 4 14 1 4 4 4 4

GARCH 23.48 30 291.86 78 11 3 4 1 1 1 1

Panel B: TSX Data

No Spline GTARCH 1.93 35 65.48 98 9 9 4 6 6 6 6
GTARCH0 1.63 35 54.35 78 7 3 2 1 1 2 2
GJR-GARCH 1.70 31 61.77 89 8 8 3 4 5 5 5
GARCH 1.34 30 58.04 82 2 4 1 2 3 3 3
EWMA 2.06 36 60.73 88 12 7 5 5 4 4 4
Realized Volatility 3.14 32 52.96 71 14 2 6 3 2 1 1

Spline GTARCH 2.38 34 68.49 98 13 12 4 3 3 3 3
GTARCH0 1.95 32 50.77 74 10 1 2 1 1 1 1
GJR-GARCH 2.04 31 69.51 107 11 13 3 4 4 4 4
GARCH 1.37 30 67.21 99 3 10 1 2 2 2 2

Spline + GTARCH 1.62 33 59.26 84 6 6 4 2 2 2 2
Macro GTARCH0 1.52 33 75.92 119 4 14 2 4 4 4 4
Variables GJR-GARCH 1.61 33 58.55 84 5 5 3 1 1 1 1

GARCH 1.28 27 68.20 97 1 11 1 3 3 3 3

Notes: This table presents results of loss functions L1=Loss for VaR, L2=loss for TVaR and the number of violations produced by each
volatility model for SPX and TSX. VaR was estimated using the Hull and White (1998) method and Threshold VaR (TVaR) was set
between the bounds estimated in Table 10. Overall ranks for loss functions are presented in columns 7 and 8. Ranks for each group
using various trade-off parameters w ranging from 0 to 1 are presented in columns 9-13.
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Figure 1: High- and Low-Frequency Volatility: Spline-GTARCH for SPX
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Figure 2: High- and Low-Frequency Volatility: Spline-Macro-GTARCH for SPX
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Figure 3: High- and Low-Frequency Volatility: Spline-GTARCH for TSX
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Figure 4: High- and Low-Frequency Volatility: Spline-Macro-GTARCH for TSX
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Figure 5: Realized Volatility and GTARCH for SPX
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Figure 6: Realized Volatility and GTARCH for TSX
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Figure 7: SPX Log Returns and 1-day VaR: Spline-GTARCH
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Figure 8: TSX Log Returns and 1-day VaR: Spline-GTARCH
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Figure 9: Estimated Thresholds with 3 Regimes: Log(VaR) Spline-GTARCH for SPX
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Figure 10: Estimated Thresholds with 3 Regimes: Log(VaR) Spline-GTARCH for TSX
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