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Abstract

Using identification-robust methods, the authors estimate and evaluate for Canada and the United

States various classes of inflation equations based on generalized structural Calvo-type models.

The models allow for different forms of frictions and vary in their assumptions regarding the type

of price indexation adopted by firms. Point and confidence-set parameter estimates are obtained

based on the inversion of identification-robust test statistics. Focus is maintained on the structural

aspect of the model with formal imposition of the restrictions that map the theoretical model into

the econometric one. The results show that there is some statistical merit to using indexation-

based Calvo-type models for inflation. However, some identification difficulties are also

uncovered with considerable uncertainty associated with estimated parameter values. In

particular, we find that implausibly-high frequency of price re-optimization values cannot be ruled

out from our identification-robust confidence sets.

JEL classification: C13, C52, E31
Bank classification: Inflation and prices; Econometric and statistical methods

Résumé

À l’aide de méthodes d’inférence robustes sur le plan de l’identification, les auteurs estiment et

évaluent, pour le Canada et les États-Unis, plusieurs classes d’équations d’inflation fondées sur

des modèles structurels généralisés comportant un mécanisme de révision des prix à la Calvo. Ces

modèles autorisent des frictions diverses et définissent le type d’indexation des prix adopté par les

entreprises selon différentes hypothèses. Les auteurs obtiennent une estimation ponctuelle des

paramètres et déterminent une région de confiance en inversant le résultat de tests d’inférence

robustes. Les restrictions qu’implique le modèle théorique sont imposées au modèle

économétrique afin de maintenir la dimension structurelle du modèle. Les résultats révèlent une

certaine légitimité statistique des modèles à la Calvo avec indexation des prix aux fins de la

prévision de l’inflation. Ces modèles présentent cependant certains problèmes d’identification

puisqu’une forte incertitude entache les valeurs estimées des paramètres. Les auteurs n’arrivent

notamment pas à exclure des régions de confiance calculées des fréquences de révision des prix

trop élevées pour être vraisemblables.

Classification JEL : C13, C52, E31
Classification de la Banque : Inflation et prix; Méthodes économétriques et statistiques



1. Introduction

In this paper we use identification-robust methods to assess the statistical performance of

indexation-based Calvo models of inflation. Calvo-type sticky price models have been popular

because of two main reasons: First, the so-called Calvo assumption (where the number of

firms that change their prices at any given time is given exogenously) make working with these

time-dependent models substantially easier than working with more intuitive state-dependent

models. Second, because statistical support has been claimed for inflation equations based

on these models (see, for example, Gaĺı and Gertler 1999; Gaĺı, Gertler, and Lopez-Salido

2001, Sbordone 2002, Eichenbaum and Fisher (2007)).

Early model versions have since been criticised for issues related to specification bias, the

use of limited-information setups, and the appropriateness of instrumental-variables-based

inference (see, for example, Rudd and Whelan 2005; Linde 2005; Dufour, Khalaf, and Kichian

2006). Thus, present-day Calvo-type models incorporate various generalizations that try to

address some of these criticisms. In particular, they incorporate various nominal or real

rigidities in labour or capital markets and account for a non-zero steady-state for inflation.

For example, the study by Christiano, Eichenbaum, and Evans (2005) presents a model

that integrates features such as frictions in the labour market, variable capital utiliza-

tion, and dynamic indexation, and the model is shown to have economic support based

on partly-calibrated and partly-estimated parameter values.1 Another example is the study

of Eichenbaum and Fisher (2007) that presents a dynamic indexation model based on Chris-

tiano, Eichenbaum, and Evans (2005) and that is estimated with generalized method of

moments (GMM). Using the J-test, Eichenbaum and Fisher (2007) find statistical support

for indexation-based Calvo-style pricing models in general, and suggest that two particular

extensions (namely, firm-specific capital and an elasticity of demand for intermediate goods

that is increasing in firms’ prices) are necessary in order to obtain plausible estimates of the

average frequency of price re-optimization.

Clearly, the usefulness of existing variants of Calvo-type models for empirical or policy

analysis depends importantly on their statistical identifiability, i.e., whether reliable econo-

metric methods permit the estimation of underlying model parameters with measurable pre-

1Matching moments methods are used for the estimation. More precisely, a measure of the distance
between the model’s impulse response functions and the empirical impulse response functions is minimized.
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cision. The theoretical frameworks of the above models typically yield Euler equations that

lead to orthogonality conditions amenable to estimation by instrumental variables (IV) or

GMM. When taken to the data, these models are often confronted with two central concerns:

(i) endogeneity, which stems, in particular, from the presence of expectations-based regres-

sors and from errors-in-variables issues, and (ii) parameter nonlinearity, that results from

the connection between the key parameters of the underlying theoretical model and the pa-

rameters of the estimated econometric model, and that can impose discontinuous parameter

restrictions.2

Both, endogeneity and nonlinear parameter constraints complicate statistical analysis in a

non-trivial way. Furthermore, in many cases, models are heavily parametrized so that some

of the parameters are calibrated, and direct estimation is typically feasible for transforms

of the remaining parameters of interest. Estimates of the latter are then “backed-out”,

and confidence intervals are constructed using the delta-method or alternative projection

techniques; see, for instance, Eichenbaum and Fisher (2007).

All of these difficulties, in conjunction with possibly-weak instruments, lead to the eventu-

ality of weak identification. Weak-identification causes the breakdown of standard asymptotic

procedures based on estimated standard errors [including IV-based t-tests, usual J -tests,

and Wald-type confidence intervals of the form: estimate ± (asymptotic standard error) ×
(asymptotic critical point)], and a heavy dependence on unknown nuisance parameters. As

a result, standard and even bootstrap-based tests and confidence intervals can be unreliable,

and spurious model rejections occur frequently, even with large data sets.3

It is important to understand the fundamental reason behind such failures. When pa-

rameters are not identifiable on a subset of the parameter space, or when the admissible set

of parameter values is unbounded (which occurs with nonlinear parameter constraints such

as ratios), valid methods for the construction of confidence sets should allow for possibly-

unbounded outcomes (Dufour 1997). Wald-type intervals are “bounded” by construction,

and are thus inappropriate in a fundamental way. They cannot be saved nor improved. Even

if maximum likelihood (ML) is used for the estimation, resorting to usual t-type significance

2For a discussion of both problems, see, for example, Gaĺı, Gertler, and Lopez-Salido (2005).
3The so-called weak instruments theoretical literature is now considerable; see, for example, Dufour (1997),

Dufour (2003), Staiger and Stock (1997), Wang and Zivot (1998), Zivot, Startz, and Nelson (1998), Dufour
and Jasiak (2001), Kleibergen (2002), Kleibergen (2005), Stock, Wright, and Yogo (2002), Moreira (2003),
Dufour and Taamouti (2005b), Dufour and Taamouti (2007), and Andrews, Moreira, and Stock (2006).
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tests, or reliance on the delta-method, will lead to the same problems that plague GMM and

linear or nonlinear IV. On recalling that identifying restrictions typically imply nonlinearity,

we see that weak identification is indeed inherent to the definition of structural models. This

is true even with a single linear simultaneous equation, which is identified via “exclusion”

restrictions.4 Despite the huge associated theoretical literature, these problems remain some-

what misunderstood, and confused with issues such as very large estimated standard errors

or poorly-approximated cut-off points. We thus emphasize that usual point and interval

estimation methods (whether based on ML, on matching moments methods, or on IV, and

whether one considers a single structural equation or a multi-equation structural system),

are flawed and should not be used. Instead, one has to rely on different methods that, by

construction, allow for unbounded outcomes.5

The works of Christiano, Eichenbaum, and Evans (2005), and Eichenbaum and Fisher

(2007) rely on standard approaches, and thus are prone to the danger of drawing wrong

conclusions because of the concerns mentioned above. The pitfalls of weak instruments

are quite subtle, as demonstrated by Dufour, Khalaf, and Kichian (2006). The latter study

re-examines the Gaĺı and Gertler (1999) model using methods that are robust to weak instru-

ments and finds clear evidence of identification difficulty. In particular, although the point

estimates of the deep parameters yield a fairly large forward-looking component for inflation,

the identification-robust confidence set associated with the parameter estimates is quite large,

and includes the case where the backward-looking component of inflation is more important

than the forward-looking part. Furthermore, when survey expectations are used instead of

rational expectations, identification difficulties remain, and both the point estimates and the

identification-robust confidence set indicate a larger role for the backward-looking component

for inflation.

With this backdrop in mind, in this paper we use Canadian and U.S. data and identification-

robust methods to examine alternative dynamic indexation-based inflation models that are

based on generalized Calvo setups.6 In all cases, structural estimation is carried out. One

category of models that we examine makes use of the full-indexation assumption, whereby

4This is easy to see when one derives the reduced-form or the structural likelihood function.
5See Dufour (1997) for further analysis of the unbounded parameter case.
6Although other types of indexation schemes such as static or rule-of-thumb approaches have also been

used in the literature, we focus on the dynamic-indexation class of models because they seem to be more
routinely used.
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all the firms that cannot re-optimize prices index them to lagged aggregate inflation. The

equations that we estimate and test in this category were presented and judged to be sta-

tistically acceptable according to GMM-based criteria, and for US data, in Eichenbaum and

Fisher (2007). Another category of models that we consider allow for partial indexation,

where only a proportion of those firms that cannot re-optimize their prices index the latter

to lagged inflation. Such an assumption is made, for example, in Smets and Wouters (2003).

Other than the extent of indexation, the models we examine also differ in their assumptions

regarding the type of capital market (i.e., whether capital is homogenous or firm-specific)

and the nature of the elasticity of intermediate goods demand that firms face.

In the next section we present the New Keynesian Phillips Curve (NKPC) inflation models

under full and partial dynamic indexation. Section 3 discusses our methodology. Section 4

presents the empirical results, and section 5 offers some conclusions.

2. NKPC Models with Indexation

We follow the modelling setup in Eichenbaum and Fisher (2007). Firms evolve in a monopolistically-

competitive environment but face constraints on the adjustment of their prices. A Calvo-type

assumption is used for this purpose: at any given time t, a firm faces an exogenous probabil-

ity of adjusting its price. When it can adjust the price, it re-optimizes. The rest of the time,

the firm’s price can be indexed to some measure of aggregate inflation.

Two forms of price indexation have specially been considered in the recent literature: full

dynamic indexation, where all non-optimizing firms’ prices are indexed to previous period’s

aggregate inflation level, and partial dynamic indexation, where only some firms’ prices are

indexed to lagged aggregate inflation.

With full dynamic indexation, the aggregate inflation process, πt, evolves according to

the equation:

∆π̂t = βEt−τ∆ ˆπt+1 + λEt−τ ŝt. (1)

Assuming rational expectations, the econometric model can be written as:

∆π̂t = β∆π̂t+1 + λŝt + ut+1, (2)

where the error term ut+1 is a moving average of order τ , and where the parameter λ is given
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by:

λ =
A.D.(1 − θ)(1 − βθ)

θ
. (3)

In the above, ∆ is the first difference operator, x̂ is the variable x in deviation from its

steady-state value, st is real marginal costs, τ refers to the implementation delay (that is,

the number of periods between the time the re-optimization decision is taken and the actual

implementation of the changes), β is the subjective discount rate, and θ is the Calvo proba-

bility of not adjusting prices. The corresponding average frequency of price re-optimization

is given by the expression 1/(1 − θ).

The parameters A and D in the λ term are defined according to different assumptions

regarding the price elasticity of intermediate goods’ demand that firms face, and the type of

capital market, respectively. The possibilities are:

1. the standard version of sticky price Calvo models, where capital is homogeneous and firms

face a constant price elasticity of demand. In this case, A = D = 1.

2. capital is homogeneous (D = 1), but firms face a variable price elasticity of demand

(A < 1).

3. Firms face a variable price elasticity of demand (A < 1), and capital is firm-specific

(D < 1). In the latter case, capital adjustment costs may also intervene.

The parameters A and D have fundamental structural implications: A governs the degree

of pass-through from a rise of marginal cost to prices, or, alternatively,

A =
1

ζε + 1
(4)

where ε is the per cent change in the elasticity of demand for a given intermediate good due

to a one per cent change in the relative price of the good at steady state, and ζ denotes the

firm’s steady state mark-up. D is a nonlinear function of β, θ, A, and other deep parameters.

It is defined as:

D =
(1 − βθκ1)

(1 + ηξA)(1 − βθκ1) + ξAβθκ2

, (5)

where η is the steady state elasticity of demand, related to ζ according to the equation

ζ = η/(η − 1) − 1. (6)
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The parameter ξ is defined as:

ξ = α/(1 − α), (7)

where α is the share of capital in the production function. Finally, κ1 and κ2 are the solutions

of the 3-equation system that solve for κ1, κ2 and ν subject to the constraint that |κ1| < 1.

The system is given by:

1 − [φ + (1 − θν) (βκ2 − Ξ)] κ1 + βκ2
1 = 0 (8)

Ξθ + [φ − β (θ + κ1) − (1 − θ) Ξν] κ2 + β (1 − θ) νκ2
2 = 0 (9)

ξA(1 − βθ)

(1 + ηξA)(1 − βθκ1) + ξAβθκ2

− ν = 0 (10)

with

Ξ = (1 − β (1 − δ)) η
1

1 − α

1

ψ
, (11)

φ = 1 + β + (1 − β (1 − δ))
1

1 − α

1

ψ
. (12)

In this set-up, ψ is the capital adjustment cost parameter; and δ is defined such that the

elasticity of the investment-to-capital ratio with respect to Tobin’s q (evaluated at steady-

state) is given by 1/(δψ). When ψ = 0,

κ1 = 0, κ2 = −Ξ̃/φ̃, ν = ξA(1 − βθ)/ [(1 + ηξA) + ξAβθκ2] ,

Ξ̃ = (1 − β (1 − δ)) η/(1 − α), φ̃ = 1 + β + (1 − β (1 − δ)) /(1 − α),

in which case

D =
1

(1 + ηξA) − ξAβθΞ̃/φ̃
. (13)

Note that the structural parameters β and θ that we will be estimating enter the definition

of the calibrated D parameter. In order to facilitate the exposition in the methodology

section (Section 3), we thus introduce the following notation: let ω represent the calibrated

parameters of the model. We can then express D as:

D = d(ω, estimated parameters). (14)

The function d(.) is then defined according to the various considered assumptions.

Instead of full indexation, it is also possible to allow only a fraction of firms to index

their prices to lagged inflation. Such a partial dynamic indexation assumption was made, for
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example, by Smets and Wouters (2003). Let the partial indexation parameter be given by

ν2. The above general structure is then modified as follows:

π̂t =
β

(1 + βν2)
π̂t+1 +

ν2

(1 + βν2)
π̂t−1 +

λ2

(1 + βν2)
ŝt + ep

2,t+1. (15)

For convenience, we denote the coefficients on π̂t+1, π̂t−1, and ŝt as γ2f , γ2b, and λp
2,

respectively. Thus, γ2f = β/(1 + βν2), γ2b = ν2/(1 + βν2), and λp
2 = λ/(1 + βν2). Note that

when ν2 = 1, the full-indexation model obtains.

3. Methodology

Identification-robust methods make use of inference procedures where error probabilities can

be controlled in the presence of endogeneity and nonlinear parameter constraints, even in

the presence of identification difficulties. Our approach differs from the usual IV-based one

in that it avoids: (i) standard t-type confidence intervals, and (ii) reliance on the delta-

method. Rather, we propose confidence set (CS) parameter estimates based on “inverting”

identification-robust test statistics. The general theory underlying this approach is developed

in Dufour and Taamouti (2005a), [see also Dufour and Taamouti (2007)]. Inverting a test

produces the set of parameter values that are not rejected by this test, and the least-rejected

parameters are the so-called Hodges-Lehmann point estimates (see Hodges and Lehmann

1963, 1983, and Dufour, Khalaf, and Kichian 2006). In contrast to the usual t-type confi-

dence intervals, confidence sets formed by inverting a test lead (by construction) to possibly-

unbounded solutions, a prerequisite for ensuring reliable coverage (see Dufour 1997).

The tests that we invert not only ensure identification-robustness, but they also main-

tain the structural aspect of the model by formally imposing the restrictions that map the

theoretical model into the econometric one. Indeed, the analyses of Gaĺı, Gertler, and Lopez-

Salido (2005) and Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2005) emphasize the

fact that any econometric method should formally take into account the constraints on the

parameters and/or error terms, as implied by the underlying theoretical model, whether in-

ference is based on a single structural equation, on the closed form, or on a structural system.

Our structural analysis is also carried out respecting the moving-average error structure and

the calibration exercise (as will be shown later, the latter involves repeatedly solving a system

of nonlinear equations). Furthermore, we avoid the delta-method altogether so that we do
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not need to “back-out” the structural parameters of interest from estimated transforms, in

contrast to Eichenbaum and Fisher (2007).7

We deal with all such irregularities by making use of simple F-type procedures (with

or without standard autocorrelation-robust corrections), for which standard finite-sample

and asymptotic distributional theory applies. This exercise is extremely simple, despite

the complexity of the nonlinear model under consideration. Our procedure has two further

“built-in” advantages. First, extremely wide confidence sets provably reveal identification

difficulties. Second, if all economically-sound values of the model’s deep parameters are

rejected at some chosen significance level, the confidence set will be empty and we can infer

that the model is soundly rejected. This provides an identification-robust alternative to the

standard GMM-based J-test. For all cases, we estimate the price re-optimization parameter

(θ) and the subjective discount rate (β), and focus on the uncertainty of their estimates. For

the partial indexation models, we also estimate the partial indexation parameter.

We hereby describe the details of our methodology as it applies for one illustrative case.

Suppose that we would like to estimate the deep parameter θ in the context of the full index-

ation model while maintaining the calibrated parameters ω at their values.8 The equation

under consideration is thus given by:

∆π̂t = β∆ ˆπt+1 + λ ŝt + ut+1, t = 1, ..., T, (16)

with ω described by the following vector:

ω =
(

β α ψ δ ζ ε
)′

.

Alternatively, we can write

yt = Y ′
t γ + ut+1, (17)

where yt ≡ ∆π̂t, Yt = (∆ ˆπt+1, ŝt)
′, γ = (β, λ)′, and where the error term reflects the rational

expectations hypothesis. An instrument set, Xt, of dimension k×1 is also available at time t.

Finally, ut+1 follows an MA(τ) structure; an implication of Eichenbaum and Fisher (2007)’s

theoretical model.

7The projection technique used by Eichenbaum and Fisher (2007) is valid in principle when the underling
transformation is monotonic; since the model at hand is highly nonlinear, monotonicity is not granted.

8In this example, the subjective discount rate parameter β is calibrated. It is straightforward to extend
the methodology to a joint estimation setup. A joint confidence set is obtained (as will be discussed below)
from which projections for each component are obtained.
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To simplify presentation, we further adopt the following notation: y is the T dimensional

vector of observations on ∆π̂t, Y is the T × 2 matrix of observations on ∆ ˆπt+1 and ŝt, X is

the T × k matrix of the instruments, and u is the T dimensional vector of error terms. We

also denote by M [V ] the projection matrix I − V (V ′V )−1V ′.

To obtain a confidence set with level 1 − α for the deep parameter θ, we invert an

identification-robust test (see below) associated with the null hypothesis

H0 : θ = θ0 and ω = ω0, (18)

where ω0 and θ0 are known values. Formally, this implies collecting the values of θ0 that,

given the calibrated ω0, are not rejected by the test (i.e. for which the test is not significant

at level α).

Using a grid search over the economically-meaningful set of values for θ, we sweep the

choices for θ0 given ω0. For each parameter choice considered, we compute test statistics and

their associated p-values (the tests are described below). The parameter vectors for which

the p-values are greater than the level α thus constitute a confidence set with level 1 − α.

In addition, the values of θ0 (and knowing ω0) that lead to the largest p-value formally yield

the set of “least-rejected” models, i.e., models that are most compatible with the data. This

method underlies the principles of the Hodges-Lehmann estimation method; see Hodges and

Lehmann (1963); Hodges and Lehmann (1983). Whereas uniqueness (as obtained through

the usual point estimation approach) is not granted, analyzing the economic information

content of these least rejected models provides very useful model diagnostics.

Thus, given ω0, for each choice of θ0:

1. Solve (14) for values of A and D associated with ω0, and θ0.
9 Using (3), obtain the

corresponding value for λ. Denote the latter λ0.

2. Conduct the test in the context of the following regression (which we denote the AR-

regression in reference to Anderson and Rubin 1949) of

{∆π̂t − β0∆ ˆπt+1 − λ0 ŝt} on {the instruments Xt}. (19)

9Note that solving this equation is numerically complex, as it involves solving systems such as (4)-(12).
The model examined in Dufour, Khalaf, and Kichian (2006), though structural, did not raise such numerical
challenges.
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Under the null hypothesis [specifically (16)-(18)], the coefficients of the latter regression

should be zero. Hence testing for a zero null hypothesis on the coefficients of Xt in (19)

provides a test of (18).

Our approach maps the structural equation (16) that faces identification difficulties into

the standard regression (19). The latter provides a regular framework (because the right-

hand side regressors are not “endogenous”), where identification constraints are no longer

needed. Therefore, usual statistics that test for the exclusion of Xt can be applied in a

straightforward manner. For instance, under the i.i.d. error assumption for (19) (i.e., the

case of τ = 0), the usual F statistic can be used:

AR (ω0, θ0) =
(y − Y γ0)

′ (I − M [X]) (y − Y γ0) /(k)

(y − Y γ0)
′ M [X] (y − Y γ0) / (T − k)

, (20)

with the F(k, T − k) or χ2(k) null distribution. To correct for departures from the i.i.d.

error hypothesis (i.e., when τ > 0), we consider a Wald-type statistic with Newey-West

autocorrelation-consistent covariance estimator for the coefficient of the AR regression (19):

AR-HAC (ω0, θ0) = (y − Y γ0)
′ X(X ′X)−1Q̂−1(X ′X)−1X ′ (y − Y γ0) (21)

Q̂ =
1

T

T∑
t=1

û2
t XtX

′
t +

1

T

L∑
l=1

T∑
t=l+1

wlûtût−l

(
XtX

′
t−l + Xt−lX

′
t

)
wl = 1 − l

L + 1

where ût is the OLS residual associated with (19) and L is the number of allowed lags.10

To conclude, despite the complex underlying nonlinearities (recall the definitions of A,

D and λ), the approaches proposed in this section are tractable, and they are identification-

robust (in the sense that they are statistically valid whether the model is identified or not).

4. Empirical Results

We conduct our estimations on quarterly U.S. and Canadian data. The U.S. sample extends

from 1982Q3 to 2006Q4.11 We use the GDP deflator for the price level, Pt, the compensation

10In our applications, we use the χ2(k) null distribution, and allow 4 quarters for L.
11This sample includes a few more years than the second subsample examined by Eichenbaum and Fisher

(2007). We did not consider the earlier dates because of the change in monetary policy that occurred at
the end of the seventies and early eighties and that likely generated a structural break in the inflation series
around those dates.
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per hour in the non-farm business sector for wages, Wt, and we define the labour share of

income as total compensation paid to employees divided by nominal GDP. The Canadian

data are from Statistics Canada and span the 1982Q2–2007Q2 range. The GDP deflator is

used for the price level, Pt, wage is given by total compensation per hour in the business

sector, and labour share is defined as wages, salaries and supplementary labour income of

persons and unincorporated businesses divided by nominal output.

Taking the log of these series (which we represent by the corresponding small letters),

we define inflation, πt, as gross inflation, and real marginal cost, st as the logarithm of the

labour share of income. The instrument set contains lags of price inflation, real marginal

cost, wage inflation, and quadratically-detrended real GDP.12 These are the same variables

as those used by Eichenbaum and Fisher (2007), except that we do not include a lagged Euler

error term.

We choose the lag order of the variables that form the instrument set depending on the

considered value for τ . We set the latter to one, similar to Eichenbaum and Fisher. Thus,

the structure of the error term is MA(1) and, as a result, the AR-HAC test is used. For the

latter, significance refers to a five per cent test level. In addition, in all the estimations, four

lags are used in the Newey-West heteroskedasticity and autocorrelation-consistent covariance

estimator.13 Finally, all variables are taken in deviation from the sample mean, which, in

our methodological context, implies that instead of fixing steady-state values to specific

parameters we allow them to be free constants.14

We first repeat the exercise conducted by Eichenbaum and Fisher (2007) on our U.S.

data, except that we apply the identification-robust methodology described in the previous

section. Thus, we use the dynamic indexation model and we calibrate all parameters to the

values considered by Eichenbaum and Fisher (2007) estimating only θ.15 The grid search

is conducted using increments of 0.01 for θ over the economically-plausible range of values

12Our output gap measure is real-time, in the sense that the gap value at time t does not use information
beyond that date. Thus, as in Dufour, Khalaf, and Kichian (2006), we proceed iteratively: to obtain the
value of the gap at time t, we detrend GDP with data ending in t. The sample is then extended by one
observation and the trend is re-estimated. The latter is used to detrend GDP, and yields a value for the gap
at time t+1. This process is repeated until the end of the sample. A quadratic trend is used for this purpose.

13We also experimented with L = 12 with generally qualitatively-similar results.
14See Sbordone (2007) for a discussion on the importance of doing so in empirical contexts.
15Recall that our sample is longer than the 1982Q3–2001Q4 subsample considered by Eichenbaum and

Fisher (2007), and note that we do not include the lagged Euler error in our instrument set.
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[0.01,0.99].

The calibration assumes that the share of labour in the production function is 2
3
, that the

quarterly depreciation rate of capital is 2.5 per cent, that the quarterly discount rate β is

0.99, and that the markup is 10 per cent. Three values of ε are considered: 0, 10 and 33, and

that imply values of 1, 0.50 and 0.23, respectively, for the A parameter. Where applicable,

the values 0 and 3 are considered for the capital cost adjustment parameter ψ. Finally, a

price implementation lag delay of one period is assumed.

Table 1 below summarizes our results in Panel A and reports the values obtained by

Eichenbaum and Fisher (2007) in Panel B for ease of comparison. Immediately, four clear

features stand out. First, our point estimates are higher than those of Eichenbaum and

Fisher (EF). Second, though higher in value, these move in the same direction as those of

EF, in that they decline when the elasticity is higher and as capital markets change from

homogeneous to firm-specific. Third, under identification-robust conditions, the results do

not change whether capital adjustment costs are considered or not. This is not the case in

EF. Finally, the identification-robust confidence sets of θ that we obtain (and, consequently,

also of the average frequency of price re-optimization Fq) are markedly larger than those

reported in the study by EF, indeed, hitting in all cases the upper bound of this parameter

space.

We next turn to the cases where β, and, where relevant, ν2, are also estimated. The

indexation-based models found in equations (2) and (15) are estimated under each of the two

hypotheses A = D = 1, and A < 1, D < 1, having imposed all of the appropriate structural

constraints as described in Section 2. For the latter hypothesis, we calibrate the elasticity

parameter to 33, which is the highest value considered by Eichenbaum and Fisher, and thus

A = 0.23.16 We also allow for positive adjustment costs and, as in Eichenbaum-Fisher, set

Ψ to a value of 3.

For the model with full indexation, the estimated structural parameters are θ and β. In

the case of equation (15), the partial indexation parameter ν2 is also estimated. The search

16Eichenbaum and Fisher also consider an elasticity value of 10. Since we conduct estimations under the
limit values of 0 and 33 for the elasticity parameter, outcomes for values of the elasticity falling within this
range can be guessed by extrapolation. Note, also, that we considered a set-up where the parameter A was
estimated along with θ and β. However, in this case, the uncertainty around the estimated A parameter
covered all of its considered space, meaning that the data could not provide any information on this parameter.
Accordingly, we instead used calibrated values for it.
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space for θ is [0.02,0.98] and for ν2 it is [0.02,1.00], with grid increments of 0.02. In the case

of β, we consider the [0.90,0.99] grid, moving through the grid with increments of 0.01.

Tables 2A and 3A report the results for the U.S. and Canada, respectively, pertaining

to the full-indexation models, while Tables 2B and 3B show the corresponding outcomes for

the partial-indexation models. Overall, we find that none of the models for the two countries

yield empty confidence sets for the estimated parameters at the 5 per cent level. This implies

that there is some statistical merit to using these type of models.17 However, it is also clear

that the sets are fairly wide (these cover all of the parameter space for some parameters),

indicating that there are identification difficulties. These are examined more closely in the

following sections.

Looking first at the results for the U.S., we notice that under the full indexation assump-

tion, both instrument sets yield similar conclusions. Thus, when capital is homogeneous, the

point estimates for θ reveal implausibly-high price stickiness, with average price durations of

12.5 to 16.5 quarters. At the same time, point estimates of the subjective discount rate are

0.99; a number very much in line with conventional wisdom on the value of this parameter.

Upon allowing for firm-specific capital, and for both instrument sets, the point estimates for

θ drop substantially, translating into durations of 4 and a half to 5 and a half quarters of

average price stickiness in the economy. These results are qualitatively similar to the out-

comes of the Eichenbaum-Fisher study, though our point estimates are higher regardless of

the type of capital market and calibrated elasticity value assumed.

The numbers reported in brackets and located under every point estimate refer to the

projected confidence intervals around those point estimates. They thus represent the small-

est and highest values in the joint identification-robust confidence set of a given estimated

parameter. Note that, with both structural parameters, the intervals include the upper or

lower limit of their admissible parameter spaces (the interval for θ includes the uppermost

value of 0.98, while for β, all of the admissible values are found in its interval).

Accordingly, with regard to estimate uncertainty, it is possible to assert that, when all

firms follow a lag-inflation-indexing pricing strategy, price stickiness is, at minimum, just over

3 and a half quarters with homogenous capital markets, and just over one and a half quarters

17Recall that our procedure automatically executes a model specification test, and that an empty confidence
set would mean a rejection of the tested specification according to our identification-robust version of the
J -test.
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with firm-specific capital markets. However, no further information is obtained from the data

to help to narrow the range of the uncertainty at the upper end of this estimate’s confidence

interval. Similarly, for the β parameter, the data does not provide any information to narrow

the range of the uncertainty for the estimate at either end of the confidence interval.

The interesting feature of the two models is that, despite the important identification

difficulties associated with the structural parameters of the model, it is possible to obtain

useful information on the coefficient of the real marginal cost parameter, λ. In particular, we

find that the estimate for this parameter is significant, though its point value is fairly small

under both capital market assumptions.

The results for the U.S. under partial indexation are qualitatively similar to those ob-

tained under the full-indexation scenario with the exception of two things. One is that point

estimates obtained using the instrument set ZEF
1 yield implausibly-high amounts of price

stickiness even when capital is assumed to be firm-specific. The other is that point estimates

for β are 0.90 regardless of the considered model. In addition, we find that the indexation

parameter has a point estimate value of one with the samller instrument set, and a value of

0.56 with ZEF
2 , while the uncertainty associated with this parameter is extensive, covering

the whole range of its admissible parameter space.

As for the implications of these results on the implied coefficients of the regressors, we

see that, except for one case, point estimates show a more forward-looking curve, though

the confidence intervals indicate that we cannot say so conclusively (the intervals include

cases where the backward-looking component of inflation is more important). In addition,

and similar to the case of the full-indexation models, we find that the coefficient on marginal

costs is small but significant, even though relativel larger values are also included in its

confiedence interval.

The results for Canada under full-indexation are quite similar to those for the U.S. except

for two main features. One is that point estimates for the subjective discount rate are

0.90 regardless of the model considered. Another is that point estimates with the smaller

instrument set yield implausible price-stickiness even with firm-specific capital. Apart from

these two things, we find that the point estimate for θ drops to 0.76 with instrument set ZEF
2

and in a world with firm-specific capital market, translating into a price stickiness duration

of about 4 quarters in the economy. At the same time, confidence intervals hit one or both

boundries of the considered parameter space for the structural parameters (and under all
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possible model configurations) and we can at best assert that, at minimum, price stickiness

is of the order of 3 and a half quarters when capital is assumed to be homogeneous, and one

and a half quarters, when capital is assumed firm-specific. Finally, again we find that the

point estimate on the marginal cost parameter is small, though it is significant and although

its confidence set includes values as large as 0.1.

A comparison between Table 2B for the U.S. and Table 3B for Canada shows, again,

qualitatively similar outcomes. We find, in particular, that with instrument set ZEF
1 point

estimates for θ are much too high and for β they are much too low. In addition, minimum

price stickiness durations are the same as those obtained with the full-indexation case. A

difference exists with respect to the partial indexation parameter in that the confidence

interval for its estimate is smaller with Canadian data than with U.S. data. Finally, results

are similar with respect to the implied coefficients on the regressors.

4. Conclusion

In sum, the fact that the confidence sets based on identification-robust methods are non-

empty (i.e., that the specifications were not rejected altogether) for both countries implies

that there is some merit to using Calvo and indexation-based NKPC models for inflation;

recall that our confidence set estimation method includes a built-in specification check which

provides an identification-robust alternative to the GMM-based J-test. However, we find

that there are also identification difficulties leading to non-negligible uncertainty around

point estimates. In particular, the fact that the econometric models cannot rule out high

or implausibly-high values of θ from the obtained confidence sets renders assertions about

model fit based on the obtained θ values tenuous.
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———. 2005b. “Projection-Based Statistical Inference in Linear Structural Models with

Possibly Weak Instruments.” Econometrica 73: 1351–1365.

———. 2007. “Further Results on Projection-Based Inference in IV Regressions with Weak,

Collinear or Missing Instruments.” Journal of Econometrics 139: 133–153.

16



Eichenbaum, M. and J. Fisher. 2006. “Estimating the Frequency of Price Re-optimization

in Calvo-Style Models.” Working Paper. Federal Reserve Bank of Chicago. Forthcoming

Journal of Monetary Economics.

———. 2007. “Estimating the Frequency of Price Re-optimization in Calvo-Style Models.”

Journal of Monetary Economics forthcoming.

Fernandez-Villaverde, J., J. Rubio-Ramirez, and S. Sargent. 2005. A,B,C’s (And D’s) For

Understanding VARS. Technical report, University of Pennsylvania.
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Appendix: Tables

Table 1: Estimates of θ, U.S. data, Calibrated Full Dynamic Indexation Model

Panel A: AR-HAC Test Results

Rental Capital Market Firm-Specific Capital Market
Ψ = 0 Ψ = 3

Elasticity θ̂ F q p − val θ̂ F q p − val θ̂ F q p − val

0 0.94 16.67 0.9044 0.84 6.25 0.9044 0.85 6.67 0.9044
(0.74, 0.99) (0.46, 0.99) (0.46, 0.99)

10 0.91 11.11 0.9044 0.83 5.88 0.9044 0.84 6.25 0.9044
(0.65, 0.99) (0.44, 0.99) (0.44, 0.99)

33 0.87 7.69 0.9044 0.81 5.26 0.9044 0.81 5.26 0.9044
(0.53, 0.99) (0.39, 0.99) (0.39, 0.99)

Panel B: The EF GMM-based Results

0 0.83 5.9 - 0.75 4.0 - 0.63 2.7 -
(0.73, 0.93) (0.56, 0.92) (0.45, 0.85)

10 0.77 4.4 - 0.70 3.3 - 0.60 2.5 -
(0.64, 0.90) (0.51, 0.90) (0.43, 0.84)

33 0.68 3.1 - 0.62 2.6 - 0.56 2.3 -
(0.52, 0.86) (0.43, 0.85) (0.38, 0.81)

Panel A reports our AR-HAC test results and Hodges-Lehmann point estimates (θ̂). The imple-
mentation lag τ is one. The cases where ψ = 0 and ψ = 3 refer to firm-specific market cases (where
D < 1) with, or without adjustment costs, respectively. Instruments include time t − τ − 1 lags of
each of inflation, marginal costs, wage inflation, and one-sided quadratically-detrended output gap.
Fq is average frequency of price re-optimization (in quarters), and p-val denotes p-values. Panel B
reproduces the Table 4 Panel B results reported in Eichenbaum and Fisher (2006).
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Table 2A: U.S. Full-Indexation Model: Estimation and Test Results

Inst. θ β Fq D λ Max P-val

A = D = 1

ZEF
1 0.94 0.99 16.7 1.00 0.0044 0.9044

(0.74,0.98) (0.90,0.99) (3.85,50) (0.0006,0.0992)
ZEF

2 0.92 0.99 12.5 1.00 0.0078 0.8991
(0.72,0.98) (0.90,0.99) (3.57,50) (0.0006,0.1173)

A = 0.23, D < 1

ZEF
1 0.82 0.99 5.56 0.48 0.0046 0.9044

(0.40,0.98) (0.90,0.99) (1.67,50) (0.0001,0.0964)
ZEF

2 0.78 0.99 4.55 0.47 0.0069 0.8991
(0.36,0.98) (0.90,0.99) (1.56,50) (0.0001,0.1186)

The applied test is the AR-HAC test. Four lags are used in the Newey-West heteroskedasticity
and autocorrelation-consistent covariance estimator. Hodges-Lehmann point estimates are reported
with the corresponding p-value under the heading ‘Max P-val’, while Fq = 1/(1 − θ) refers to the
implied price stickiness (in quarters). The numbers in parentheses reported underneath a parameter
estimate correspond to the projection-based confidence interval for that parameter. Instrument sets
are as follows: ZEF

1 includes the second lag of each of: inflation, marginal costs, output gap, and
change in nominal wages. ZEF

1 includes the second and third lags of each of inflation, marginal
costs, output gap, and change in nominal wages.
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Table 2B: U.S. Partial-Indexation Model: Estimation and Test Results

Inst. ν2 θ β Fq D γ2f γ2b λP
2 Max P-val

A = D = 1

ZEF
1 1.00 0.98 0.90 1.00 50.0 0.60 0.37 0.0098 0.7058

(0.02,1.00) (0.72,0.98) (0.90,0.99) (3.57,50) (0.47,0.97) (0.02,0.53) (0.0006,0.1117)
ZEF

2 0.56 0.94 0.90 1.00 16.7 0.84 0.15 0.0038 0.9552
(0.02,1.00) (0.72,0.98) (0.90,0.99) (3.57,50) (0.47,0.97) (0.02,0.53) (0.0006,0.1117)

A = 0.23, D < 1

ZEF
1 1.00 0.98 0.90 0.64 50.0 0.47 0.53 0.0004 0.7109

(0.02,1.00) (0.36,0.98) (0.90,0.99) (1.62,50) (0.47,0.97) (0.02,0.53) (0.0001,0.1085)
ZEF

2 0.56 0.78 0.90 0.49 4.55 0.60 0.37 0.0094 0.9552
(0.02,1.00) (0.72,0.98) (0.90,0.99) (1.56,50) (0.47,0.97) (0.02,0.53) (0.0001,0.1186)

Refer to the table notes under Table 2A for details.
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Table 3A: Canadian Full-Indexation Model: Estimation and Test Results

Inst. θ β Fq D λ Max P-val

A = D = 1

ZEF
1 0.98 0.90 50.0 1.00 0.0024 0.7058

(0.72,0.98) (0.90,0.99) (3.57,50) (0.0006,0.1173)
ZEF

2 0.94 0.90 16.7 1.00 0.0098 0.4418
(0.74,0.98) (0.90,0.99) (3.85,50) (0.0006,0.1044)

A = 0.23, D < 1

ZEF
1 0.98 0.90 50.0 0.64 0.0004 0.7109

(0.38,0.98) (0.90,0.99) (1.63,50) (0.0001,0.0964)
ZEF

2 0.76 0.90 4.17 0.47 0.0110 0.4421
(0.38,0.98) (0.90,0.99) (1.63,50) (0.0001,0.1051)

Refer to the table notes under Table 2A for details.
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Table 3B: Canadian Partial-Indexation Model: Estimation and Test Results

Inst. ν2 θ β Fq D γ2f γ2b λP
2 Max P-val

A = D = 1

ZEF
1 1.00 0.98 0.90 1.00 50.0 0.47 0.53 0.0024 0.7058

(0.02,1.00) (0.72,0.98) (0.90,0.99) (3.57,50) (0.47,0.97) (0.02,0.53) (0.0006,0.1117)
ZEF

2 1.00 0.94 0.90 1.00 16.7 0.47 0.53 0.0098 0.4418
(0.12,1.00) (0.74,0.98) (0.90,0.99) (3.85,50) (0.47,0.83) (0.11,0.53) (0.0006,0.1044)

A = 0.23, D < 1

ZEF
1 1.00 0.98 0.90 0.64 50.0 0.47 0.53 0.0004 0.7109

(0.02,1.00) (0.38,0.98) (0.90,0.99) (1.61,50) (0.47,0.97) (0.02,0.53) (0.0001,0.1085)
ZEF

2 1.00 0.76 0.90 0.48 4.17 0.47 0.53 0.0110 0.4421
(0.12,1.00) (0.38,0.98) (0.90,0.99) (1.61,50) (0.47,0.83) (0.11,0.53) (0.0001,0.1051)

Refer to the table notes under Table 2A for details.
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