Ultraviolet

From Wikipedia, the free encyclopedia
  (Redirected from Ultraviolet radiation)
Jump to: navigation, search
For other uses, see Ultraviolet (disambiguation).
"UV" redirects here. For other uses, see UV (disambiguation).
(left) Portable ultraviolet lamp. (right) UV light is also produced by electric arcs. Arc welders must wear eye protection to prevent welder's flash.

Ultraviolet (UV) light is an electromagnetic radiation with a wavelength from 400 nm to 100 nm, shorter than that of visible light but longer than X-rays. Though usually invisible, under some conditions children and young adults can see ultraviolet down to wavelengths of about 310 nm,[1][2] and people with aphakia (missing lens) can also see some UV wavelengths. Near-UV is visible to some insects and birds.

UV radiation is present in sunlight, and is produced by electric arcs and specialized lights such as mercury-vapor lamps, tanning lamps, and black lights. Although lacking the energy to ionize atoms, long-wavelength ultraviolet radiation can cause chemical reactions, and causes many substances to glow or fluoresce. Consequently, biological effects of UV are greater than simple heating effects, and many practical applications of UV radiation derive from its interactions with organic molecules.

Suntan, freckling and sunburn are familiar effects of over-exposure, along with higher risk of skin cancer. Living things on dry land would be severely damaged by ultraviolet radiation from the sun if most of it were not filtered out by the Earth's atmosphere, particularly the ozone layer.[3] More-energetic, shorter-wavelength "extreme" UV below 121 nm ionizes air so strongly that it is absorbed before it reaches the ground.[4] Ultraviolet is also responsible for the formation of bone-strengthening vitamin D in most land vertebrates, including humans. The UV spectrum thus has effects both beneficial and harmful to human health.

Discovery[edit]

"Ultraviolet" means "beyond violet" (from Latin ultra, "beyond"), violet being the color of the highest frequencies of visible light. Ultraviolet light has a higher frequency than violet light.

UV radiation was discovered in 1801 when the German physicist Johann Wilhelm Ritter observed that invisible rays just beyond the violet end of the visible spectrum darkened silver chloride-soaked paper more quickly than violet light itself. He called them "oxidizing rays" to emphasize chemical reactivity and to distinguish them from "heat rays", discovered the previous year at the other end of the visible spectrum. The simpler term "chemical rays" was adopted shortly thereafter, and it remained popular throughout the 19th century, although there were those who held that these were an entirely different sort of radiation from light (notably John William Draper, who named them "tithonic rays"[5][6]). The terms chemical and heat rays were eventually dropped in favour of ultraviolet and infrared radiation, respectively.[7][8] In 1878 the effect of short-wavelength light on sterilizing bacteria was discovered. By 1903 it was known the most effective wavelengths were around 250 nm. In 1960, the effect of ultraviolet radiation on DNA was established.[9]

The discovery of the ultraviolet radiation below 200 nm, named vacuum ultraviolet because it is strongly absorbed by air, was made in 1893 by the German physicist Victor Schumann.[10]

Subtypes[edit]

The electromagnetic spectrum of ultraviolet radiation (UVR), defined most broadly as 10–400 nano-meter, can be subdivided into a number of ranges recommended by the ISO standard ISO-21348:[11]

Name Abbreviation Wavelength (nm) Photon energy (eV, aJ) Notes / alternative names
Ultraviolet A UVA 315–400 3.10–3.94, 0.497–0.631 Long wave, black light, not absorbed by the ozone layer
Ultraviolet B UVB 280–315 3.94–4.43, 0.631–0.710 Medium wave, mostly absorbed by the ozone layer
Ultraviolet C UVC 100–280 4.43–12.4, 0.710–1.987 Short wave, germicidal, completely absorbed by the ozone layer and atmosphere
Near ultraviolet NUV 300–400 3.10–4.13, 0.497–0.662 Visible to birds, insects and fish
Middle ultraviolet MUV 200–300 4.13–6.20, 0.662–0.993
Far ultraviolet FUV 122–200 6.20–12.4, 0.993–1.987
Hydrogen Lyman-alpha H Lyman-α 121–122 10.16–10.25, 1.628–1.642 Spectral line at 121.6 nm, 10.20 eV. Ionizing radiation at shorter wavelengths
Vacuum ultraviolet VUV 10–200 6.20–12.4, 0.993–1.987 Strongly absorbed by atmospheric oxygen, though 150–200 nm wavelengths can propagate through nitrogen
Extreme ultraviolet EUV 10–121 12.4–124, 1.99–19.87 Entirely ionizing radiation by some definitions; completely absorbed by the atmosphere

A variety of solid-state and vacuum devices have been explored for use in different parts of the UV spectrum. Many approaches seek to adapt visible light-sensing devices, but these can suffer from unwanted response to visible light and various instabilities. Ultraviolet can be detected by suitable photodiodes and photocathodes, which can be tailored to be sensitive to different parts of the UV spectrum. Sensitive ultraviolet photomultipliers are available. Spectrometers and radiometers are made for measurement of UV radiation. Silicon detectors are used across the spectrum.[12]

People cannot perceive UV directly since the lens of the human eye blocks most radiation in the wavelength range of 300–400 nm; shorter wavelengths are blocked by the cornea.[13] Nevertheless, the photoreceptors of the retina are sensitive to near-UV, and people lacking a lens (a condition known as aphakia) perceive near-UV as whitish-blue or whitish-violet.[14][15]

Vacuum UV or VUV wavelengths (shorter than 200 nm) are strongly absorbed by molecular oxygen in the air, though the longer wavelengths of about 150–200 nm can propagate through nitrogen. Scientific instruments can therefore utilize this spectral range by operating in an oxygen-free atmosphere (commonly pure nitrogen), without the need for costly vacuum chambers. Significant examples include 193 nm photolithography equipment (for semiconductor manufacturing), and circular dichroism spectrometers.

Technology for VUV instrumentation was largely driven by solar astronomy for many decades. While optics can be used to remove unwanted visible light that contaminates the VUV, in general, detectors can be limited by their response to non-VUV radiation, and the development of "solar-blind" devices has been an important area of research. Wide-gap solid-state devices or vacuum devices with high-cutoff photocathodes can be attractive compared to silicon diodes.

Extreme UV (EUV or sometimes XUV) is characterized by a transition in the physics of interaction with matter. Wavelengths longer than about 30 nm interact mainly with the outer valence electrons of atoms, while wavelengths shorter than that interact mainly with inner shell electrons and nuclei. The long end of the EUV spectrum is set by a prominent He+ spectral line at 30.4 nm. EUV is strongly absorbed by most known materials, but it is possible to synthesize multilayer optics that reflect up to about 50% of EUV radiation at normal incidence. This technology pioneered by the NIXT and MSSTA sounding rockets in the 1990s, has been used to make telescopes for solar imaging.

Levels of ozone at various altitudes and blocking of different bands of ultraviolet radiation. In essence, all UVC is blocked by diatomic oxygen (from 100–200 nm) or by ozone (triatomic oxygen) (200–280 nm) in the atmosphere. The ozone layer then blocks most UVB. Meanwhile, UVA is hardly affected by ozone and most of it reaches the ground. UVA makes up almost all of the ~ 25% of the Sun's total UV that penetrates the Earth's atmosphere.

Solar ultraviolet[edit]

Very hot objects emit UV radiation (see Black-body radiation). The Sun emits ultraviolet radiation at all wavelengths, including the extreme ultraviolet where it crosses into X-rays at 10 nm. Extremely hot stars emit proportionally more UV radiation than the Sun. Sunlight in space at the top of Earth's atmosphere (see solar constant) is composed of about 50% infrared light, 40% visible light, and 10% ultraviolet light, for a total intensity of about 1400 W/m2 in vacuum.[16]

However, at ground level sunlight is 44% visible light, 3% ultraviolet (with the Sun at its zenith), and the remainder infrared.[17][18] Thus, the atmosphere blocks about 77% of the Sun's UV, almost entirely in the shorter UV wavelengths, when the Sun is highest in the sky (zenith). Of the ultraviolet radiation that reaches the Earth's surface, more than 95% is the longer wavelengths of UVA, with the small remainder UVB. There is essentially no UVC.[19] The fraction of UVB which remains in UV light after passing through the atmosphere is heavily dependent on cloud cover and atmospheric conditions. Thick clouds block UVB effectively; but in "partly cloudy" days, patches of blue sky showing between clouds are also sources of (scattered) UVA and UVB, which are produced by Rayleigh scattering in the same way as the visible blue light from those parts of the sky.

The shorter bands of UVC, as well as even more-energetic UV radiation produced by the Sun, are absorbed by oxygen and generate the ozone in the ozone layer when single oxygen atoms produced by UV photolysis of dioxygen react with more dioxygen. The ozone layer is especially important in blocking most UVB and the remaining part of UVC not already blocked by ordinary oxygen in air.

Blockers and absorbers[edit]

Ultraviolet light absorbers are molecules used in organic materials (polymers, paints, etc.) to absorb UV light to reduce the UV degradation (photo-oxidation) of a material. The absorbers can themselves degrade over time, so monitoring of absorber levels in weathered materials is necessary.

In sunscreen, ingredients that absorb UVA/UVB rays, such as avobenzone, oxybenzone[20] and octyl methoxycinnamate, are organic chemical absorbers or "blockers". They are contrasted with inorganic absorbers/"blockers" of UV radiation such as titanium dioxide and zinc oxide.

For clothing, the Ultraviolet Protection Factor (UPF) represents the ratio of sunburn-causing UV without and with the protection of the fabric, similar to SPF (Sun Protection Factor) ratings for sunscreen. Standard summer fabrics have UPF of approximately 6, which means that about 20% of UV will pass through.

Suspended nanoparticles in stained glass prevent UV light from causing chemical reactions that change image colors. A set of stained glass color reference chips is planned to be used to calibrate the color cameras for the 2019 ESA Mars rover mission, since they will remain unfaded by the high level of UV present at the surface of Mars.[21]

Common soda lime glass is partially transparent to UVA but is opaque to shorter wavelengths, whereas fused quartz glass, depending on quality, can be transparent even to vacuum UV wavelengths. Ordinary window glass passes about 90% of the light above 350 nm, but blocks over 90% of the light below 300 nm.[22][23][24]

Wood's glass is a nickel-bearing form of glass with a deep blue-purple color that blocks most visible light and passes ultraviolet light.

Artificial sources[edit]

The light from a mercury lamp is predominantly at discrete wavelengths. Other practical UV sources with more continuous emission spectra include xenon arc lamps (commonly used as sunlight simulators), deuterium arc lamps, mercury-xenon arc lamps, metal-halide arc lamps, and tungsten-halogen incandescent lamps.

"Black lights"[edit]

Two black light fluorescent tubes, showing use. The longer tube is a F15T8/BLB 18 inch, 15 watt tube, shown in the bottom image in a standard plug-in fluorescent fixture. The shorter is an F8T5/BLB 12 inch, 8 watt tube, used in a portable battery-powered black light sold as a pet urine detector.
Main article: Black light

A black light lamp emits long-wave UVA radiation and little visible light. Fluorescent black light lamps use a phosphor on the inner tube surface, which emits UVA light instead of visible light. Some lamps use a deep-bluish-purple Wood's glass optical filter that blocks almost all visible light with wavelengths longer than 400 nanometres.[25] Others use plain glass instead of the more expensive Wood's glass, so they appear light-blue to the eye when operating. A black light may also be formed, very inefficiently, by using a layer of Wood's glass in the envelope for an incandescent bulb. Though cheaper than fluorescent UV lamps, only 0.1% of the input power is converted to usable ultraviolet radiation. Mercury-vapor black lights in ratings up to 1 kW with UV-emitting phosphor and an envelope of Wood's glass are used for theatrical and concert displays. UVA/UVB emitting bulbs are also sold for other special purposes, such as tanning lamps and reptile-keeping.

Short wave ultraviolet lamps[edit]

9 watt germicidal UV lamp, in compact fluorescent (CF) form factor
Commercial germicidal lamp in butcher shop

A shortwave UV lamp can be made using a fluorescent lamp tube with no phosphor coating. These lamps emit ultraviolet light with two peaks in the UVC band at 253.7 nm and 185 nm due to the mercury within the lamp. Eighty-five to 90% of the UV produced by these lamps is at 253.7 nm, whereas only five to ten percent is at 185 nm[citation needed]. The fused quartz glass tube passes the 253 nm radiation but blocks the 185 nm wavelength. Such tubes have two or three times the UVC power of a regular fluorescent lamp tube. These low-pressure lamps have a typical efficiency of approximately thirty to forty percent, meaning that for every 100 watts of electricity consumed by the lamp, they will produce approximately 30–40 watts of total UV output. These "germicidal" lamps are used extensively for disinfection of surfaces in laboratories and food processing industries, and for disinfecting water supplies.

Gas-discharge lamps[edit]

Main article: Gas-discharge lamp

Specialized UV gas-discharge lamps containing different gases produce UV light at particular spectral lines for scientific purposes. Argon and deuterium arc lamps are often used as stable sources, either windowless or with various windows such as magnesium fluoride.[26] These are often the light sources in UV spectroscopy equipment for chemical analysis.

The excimer lamp, a UV light source developed within the last two decades, is seeing increasing use in scientific fields. It has the advantages of high-intensity, high efficiency, and operation at a variety of wavelength bands into the vacuum ultraviolet.

Ultraviolet LEDs[edit]

Ultraviolet Infinity mirror
A 380 nanometre UV LED makes some common household items fluoresce.

Light-emitting diodes (LEDs) can be manufactured to emit light in the ultraviolet range, although practical LED arrays are very limited below 365 nm. LED efficiency at 365 nm is about 5–8%, whereas efficiency at 395 nm is closer to 20%, and power outputs at these longer UV wavelengths are also better. Such LED arrays are beginning to be used for UV curing applications, and are already successful in digital print applications and inert UV curing environments. Power densities approaching 3 W/cm2 (30 kW/m2) are now possible, and this, coupled with recent developments by photoinitiator and resin formulators, makes the expansion of LED-cured UV materials likely.

Ultraviolet lasers[edit]

Main article: Excimer laser

Gas lasers, laser diodes and solid-state lasers can be manufactured to emit ultraviolet light, and lasers are available which cover the entire UV range. The nitrogen gas laser uses electronic excitation of nitrogen molecules to emit a beam that is mostly UV. The strongest ultraviolet lines are at 337.1 nm and 357.6 nm,wavelength. Another type of high power gas laser is the excimer laser. They are widely used lasers emitting in ultraviolet and vacuum ultraviolet wavelength ranges. Presently, UV argon-fluoride (ArF) excimer lasers operating at 193 nm are routinely used in integrated circuit production by photolithography. The current wavelength limit of production of coherent UV is about 126 nm, characteristic of the Ar2* excimer laser.

Direct UV-emitting laser diodes are available at 375 nm.[27] UV diode lasers have been demonstrated using Ce:LiSAF crystals (cerium-doped lithium strontium aluminum fluoride), a process developed in the 1990s at Lawrence Livermore National Laboratory.[28] Wavelengths shorter than 325 nm are commercially generated in diode-pumped solid-state lasers. Ultraviolet lasers can also be made by applying frequency conversion to lower-frequency lasers.

Ultraviolet lasers have applications in industry (laser engraving), medicine (dermatology, and keratectomy), chemistry (MALDI), free air secure communications, computing (optical storage) and manufacture of integrated circuits.

Tunable Vacuum Ultraviolet (VUV) via sum and difference frequency mixing[edit]

The Vacuum Ultraviolet (VUV) band (100-200 nm) can be generated by non-linear 4 wave mixing in gases by sum or difference frequency mixing of 2 or more longer wavelength lasers. The generation is generally done in gasses (e.g. krypton, hydrogen which are two-photon resonant near 193 nm) or metal vapors (e.g. magnesium). By making one of the lasers tunable the VUV light can be tuned. If one of the lasers is resonant with a transition in the gas or vapor then the VUV production is intensified. However, resonances also generate wavelength dispersion, and thus the phase matching can limit the tunable range of the 4 wave mixing. Difference frequency mixing (lambda1 + lambda2 - lambda3) has an advantage over sum frequency mixing because the phase matching can be more perfect and provide greater tuning.[29] In particular, difference frequency mixing two photons of an ArF (193 nm) excimer laser with a tunable visible or near IR laser in hydrogen or krypton provides resonantly enhanced tunable VUV covering from 100 nm to 200 nm.[29] Practically, the lack of suitable gas/vapor cell window materials above the lithium fluoride cut-off wavelength limit the tuning range to longer than about 110 nm, and window-free geometries are needed past this point.

Plasma and synchrotron sources of extreme UV[edit]

Lasers have been used to indirectly generate non-coherent extreme UV (EUV) light at 13.5 nm for extreme ultraviolet lithography. The EUV light is not emitted by the laser, but rather by electron transitions in an extremely hot tin or xenon plasma, which is excited by an excimer laser.[30] This technique does not require a synchrotron, yet can produce UV at the edge of the X-ray spectrum. Synchrotron light sources can also produce all wavelengths of UV, including those at the boundary of the UV and X-ray spectra at 10 nm.

Human health-related effects[edit]

Further information: Health effects of sun exposure

The impact of ultraviolet radiation on human health has implications for the risks and benefits of sun exposure, and is also implicated in issues such as fluorescent lamps and health.

Beneficial effects[edit]

UVB induces production of vitamin D in the skin at rates of up to 1,000 IUs per minute. The majority of UV's positive health effects are related to this vitamin, which helps to regulate calcium metabolism (vital for the nervous system and bone health), immunity, cell proliferation, insulin secretion, and blood pressure.[31]

The amount of the brown pigment melanin in the skin increases after exposure to UV radiation at moderate levels depending on skin type; this is commonly known as a sun tan. Melanin is an excellent photoprotectant that absorbs both UVB and UVA radiation and dissipates the energy as harmless heat, protecting the skin against both direct and indirect DNA damage.

Harmful effects[edit]

Sunburn effect (as measured by the UV Index) is the product of the sunlight spectrum (radiation intensity) and the erythemal action spectrum (skin sensitivity) across the range of UV wavelengths. Sunburn production per milliwatt is increased by almost a factor of 100 between the near UVB wavelengths of 315-295 nm

The differential effects of various wavelengths of light on the human cornea and skin are sometimes called the "erythemal action spectrum.".[32] The action spectrum shows that UVA does not cause immediate reaction, but rather UV begins to cause photokeratitis and skin redness (with Caucasians more sensitive) at wavelengths starting near the beginning of the UVB band at 315 nm, and rapidly increasing to 300 nm. The skin and eyes are most sensitive to damage by UV at 265–275 nm, which is in the lower UVC band. At still shorter wavelengths of UV, damage continues to happen, but the overt effects are not as great with so little penetrating the atmosphere. The WHO-standard ultraviolet index is a widely publicized measurement of total strength of UV wavelengths that cause sunburn on human skin, by weighting UV exposure for action spectrum effects at a given time and location. This standard shows that most sunburn happens due to UV at wavelengths near the boundary of the UVA and UVB bands.

Skin damage[edit]

Overexposure to UVB radiation not only can cause sunburn but also some forms of skin cancer. However, the degree of redness and eye irritation (which are largely not caused by UVA) do not predict the long-term effects of UV, although they do mirror the direct damage of DNA by ultraviolet. The World Health Organization (WHO) classifies broad-spectrum ultraviolet radiation as a Group 1 carcinogen.

In humans, excessive exposure to all bands of UV radiation can result in chronic harmful effects on the skin, eye, and immune system.[33] All bands of UV radiation damage collagen fibers and accelerate aging of the skin. Both UVA and UVB destroy vitamin A in skin, which may cause further damage.[34]

UVB light can cause direct DNA damage.[35] The mutagenicity of UV radiation can be observed in bacterial cultures. This cancer connection is one reason for concern about ozone depletion and the ozone hole.

Demonstration of the effect of sunscreen. The man's face has sunscreen on his right only. The left image is a regular photograph of the face; the right image is taken by reflected UV light. The side of the face with sunscreen is darker because the sunscreen absorbs the UV light.

Medical organizations recommend that patients protect themselves from UV radiation by using sunscreen. Five sunscreen ingredients have been shown to protect mice against skin tumors. However, some sunscreen chemicals produce potentially harmful substances if they are illuminated while in contact with living cells.[36][37]

Ultraviolet radiation can aggravate several skin conditions and diseases, including rosacea, lupus and others.[38]

Eye damage[edit]

The eye is most sensitive to damage by UV in the lower UVC band at 265–275 nm. Light of this wavelength is almost absent from sunlight, but is found in welder's arc lights and other artificial sources. Exposure to these can cause "welder's flash" or "arc eye" (photokeratitis), and can lead to cataracts, pterygium,[39][40] and pinguecula formation. To a lesser extent, UVB in sunlight from 310–280 nm also causes photokeratitis ("snow blindness"), and the cornea, the lens, and the retina can be damaged.

Protective eyewear is beneficial to those exposed to ultraviolet radiation. Since light can reach the eyes from the sides, full-coverage eye protection is usually warranted if there is an increased risk of exposure, as in high-altitude mountaineering. Mountaineers are exposed to higher-than-ordinary levels of UV radiation, both because there is less atmospheric filtering and because of reflection from snow and ice.

Ordinary, untreated eyeglasses give some protection. Most plastic lenses give more protection than glass lenses, because, as noted above, glass is transparent to UVA and the common acrylic plastic used for lenses is less so. Some plastic lens materials, such as polycarbonate, inherently block most UV. Protective coating is available for eyeglass lenses that need it, but even a coating that completely blocks UV will not protect the eye from light that arrives around the lens.

Degradation of polymers, pigments and dyes[edit]

Main article: UV degradation
UV damaged polypropylene rope (left) and new rope (right)

UV degradation is one form of polymer degradation that affects plastics exposed to sunlight. The problem appears as discoloration or fading, cracking, loss of strength or disintegration. The effects of attack increases with exposure time and sunlight intensity. The addition of UV absorbers inhibits the effect.

Sensitive polymers include thermoplastics and speciality fibers like aramids. UV absorption leads to chain degradation and loss of strength at sensitive points in the chain structure. Aramid rope must be shielded with a sheath of thermoplastic if it is to retain its strength.

IR spectrum showing carbonyl absorption due to UV degradation of polyethylene

Many pigments and dyes absorb UV and change colour, so paintings and textiles may need extra protection both from sunlight and fluorescent bulbs, two common sources of UV radiation. Window glass absorbs some harmful UV, but valuable artifacts need extra shielding. Many museums place black curtains over watercolour paintings and ancient textiles, for example. Since watercolours can have very low pigment levels, they need extra protection from UV light. Various forms of picture framing glass, including acrylics (plexiglass), laminates, and coatings, offer different degrees of UV (and visible light) protection.

Applications[edit]

Because of its ability to cause chemical reactions and excite fluorescence in materials, ultraviolet light has a number of applications. The following table[41] gives some uses of specific wavelength bands in the UV spectrum

Photography[edit]

A portrait taken using only UV light between the wavelengths of 335 and 365 nanometers.

Photographic film responds to ultraviolet radiation but the glass lenses of cameras usually block radiation shorter than 350 nm. Slightly yellow UV-blocking filters are often used for outdoor photography to prevent unwanted bluing and overexposure by UV light. For photography in the near UV, special filters may be used. Photography with wavelengths shorter than 350 nm requires special quartz lenses which do not absorb the radiation. Digital cameras sensors may have internal filters that block UV to improve color rendition accuracy. Sometimes these internal filters can be removed, or they may be absent, and an external visible-light filter prepares the camera for near-UV photography. A few cameras are designed for use in the UV.

Photography by reflected ultraviolet radiation is useful for medical, scientific, and forensic investigations, in applications as wide spread as detecting bruising of skin, alterations of documents, or restoration work on paintings. Photography of the fluorescence produced by ultraviolet illumination uses visible wavelengths of light.

Aurora at Jupiter's north pole as seen in ultraviolet light by the Hubble Space Telescope.

In ultraviolet astronomy, measurements are used to discern the chemical composition of the interstellar medium, and the temperature and composition of stars. Because the ozone layer blocks many UV frequencies from reaching telescopes on the surface of the Earth, most UV observations are made from space.

Electrical and electronics industry[edit]

Corona discharge on electrical apparatus can be detected by its ultraviolet emissions. Corona causes degradation of electrical insulation and emission of ozone and nitrogen oxide.[43]

Some EPROM (erasable programmable read-only memory) modules are erased by exposure to UV radiation. These modules have a transparent (quartz) window on the top of the chip that allows the UV radiation in.

Fluorescent dye uses[edit]

Colorless fluorescent dyes that emit blue light under UV are added as optical brighteners to paper and fabrics. The blue light emitted by these agents counteracts yellow tints that may be present, and causes the colors and whites to appear whiter or more brightly colored.

UV fluorescent dyes that glow in the primary colors are used in paints, papers and textiles either to enhance color under daylight illumination, or to provide special effects when lit with UV lamps. Blacklight paints that contain dyes that glow under UV are used in a number of art and esthetic applications.

A bird appears on many Visa credit cards when they are held under a UV light source

To help prevent counterfeiting of currency, or forgery of important documents such as driver's licenses and passports, the paper may include a UV watermark or fluorescent multicolor fibers that are visible under ultraviolet light. Postage stamps are tagged with a phosphor that glows under UV light to permit automatic detection of the stamp and facing of the letter.

UV fluorescent dyes are used in many applications (for example, biochemistry and forensics). Some brands of pepper spray will leave an invisible chemical (UV dye) that is not easily washed off on a pepper-sprayed attacker, which would help police identify the attacker later.[44]

In some types of nondestructive testing UV light stimulates fluorescent dyes to highlight defects in a broad range of materials. These dyes may be carried into surface-breaking defects by capillary action (liquid penetrant inspection) or they may be bound to ferrite particles caught in magnetic leakage fields in ferrous materials (magnetic particle inspection).

Analytic uses[edit]

Forensics[edit]

UV is an investigative tool at the crime scene helpful in locating and identifying bodily fluids such as semen, blood, and saliva.[45] For example, ejaculated fluids or saliva can be detected by high-power UV light sources, irrespective of the structure or colour of the surface the fluid is deposited upon.[46] UV-Vis microspectroscopy is also used to analyze trace evidence, such as textile fibers and paint chips, as well as questioned documents.

Other applications include authentication of various collectibles and art, and detecting counterfeit currency. Even materials not specially marked with UV sensitive dyes may have distinctive fluorescence under UV light, or may fluoresce differently under short-wave versus long-wave ultraviolet.

Enhancing contrast of ink[edit]

Using multi-spectral imaging it is possible to read illegible papyrus, such as the burned papyri of the Villa of the Papyri or of Oxyrhynchus, or the Archimedes palimpsest. The technique involves taking pictures of the illegible document using different filters in the infrared or ultraviolet range, finely tuned to capture certain wavelengths of light. Thus, the optimum spectral portion can be found for distinguishing ink from paper on the papyrus surface.

Simple NUV sources can be used to highlight faded iron-based ink on vellum.[47]

Sanitary compliance[edit]

A person wearing full protective gear, glowing in ultraviolet light
After a training exercise involving fake body fluids, a healthcare worker's personal protective equipment is checked with ultraviolet light to find invisible drops of fluids. These fluids could contain deadly viruses or other contamination.

Ultraviolet light aids in the detection of organic material deposits that remain on surfaces where periodic cleaning and sanitizing may not have been properly accomplished. The phenyl and indole chemical moieties in proteins absorb UV, and are made visible by blocking the fluorescence of the material beneath them—often UV brighteners in fabrics. Detergents are easily detected using UV inspection. In "ABS" or alkylbenzenesulfonate detergents, the substituted benzine absorbs UV. Phosphate detergents with a phenyl moiety also absorb.

Pet urine deposits in carpeting or other hard surfaces can be detected for accurate treatment and removal of mineral traces and the odor-causing bacteria that feed on proteins in urine. Many hospitality industries use UV lamps to inspect for unsanitary bedding to determine life-cycle for mattress restoration, as well as general performance of the cleaning staff.[citation needed] A perennial news feature for many television news organizations involves an investigative reporter's using a similar device to reveal unsanitary conditions in hotels, public toilets, hand rails, and such.

Chemistry[edit]

UV/VIS spectroscopy is widely used as a technique in chemistry to analyze chemical structure, the most notable one being conjugated systems. UV radiation is often used to excite a given sample where the fluorescent emission is measured with a spectrofluorometer. In biological research, UV light is used for quantification of nucleic acids or proteins.

A collection of mineral samples brilliantly fluorescing at various wavelengths as seen while being irradiated by UV light.

Ultraviolet lamps are also used in analyzing minerals and gems.

In pollution control applications, ultraviolet analyzers are used to detect emissions of nitrogen oxides, sulfur compounds, mercury and ammonia, for example in the flue gas of fossil fired power plants.[48] Ultraviolet light can detect thin sheens of spilled oil on water, either by the high reflectivity of oil films at UV wavelengths, fluorescence of compounds in oil, or by absorbing of UV light created by Raman scattering in water.[49]

Material science uses[edit]

Fire detection[edit]

See also: Flame detector

In general, ultraviolet detectors use either a solid-state device, such as one based on silicon carbide or aluminium nitride, or a gas-filled tube as the sensing element. UV detectors that are sensitive to UV light in any part of the spectrum respond to irradiation by sunlight and artificial light. A burning hydrogen flame, for instance, radiates strongly in the 185- to 260-nanometer range and only very weakly in the IR region, whereas a coal fire emits very weakly in the UV band yet very strongly at IR wavelengths; thus, a fire detector that operates using both UV and IR detectors is more reliable than one with a UV detector alone. Virtually all fires emit some radiation in the UVC band, whereas the Sun's radiation at this band is absorbed by the Earth's atmosphere. The result is that the UV detector is "solar blind", meaning it will not cause an alarm in response to radiation from the Sun, so it can easily be used both indoors and outdoors.

UV detectors are sensitive to most fires, including hydrocarbons, metals, sulfur, hydrogen, hydrazine, and ammonia. Arc welding, electrical arcs, lightning, X-rays used in nondestructive metal testing equipment (though this is highly unlikely), and radioactive materials can produce levels that will activate a UV detection system. The presence of UV-absorbing gases and vapors will attenuate the UV radiation from a fire, adversely affecting the ability of the detector to detect flames. Likewise, the presence of an oil mist in the air or an oil film on the detector window will have the same effect.

Photolithography[edit]

Ultraviolet radiation is used for very fine resolution photolithography, a procedure wherein a chemical called a photoresist is exposed to UV radiation that has passed through a mask. The light causes chemical reactions to occur in the photoresist. After removal of unwanted photoresist, a pattern determined by the mask remains on the sample. Steps may then be taken to "etch" away, deposit on or otherwise modify areas of the sample where no photoresist remains.

Photolithography is used in the manufacture of semiconductors, integrated circuit components,[50] and printed circuit boards. Photolithography processes used to fabricate electronic integrated circuits presently use 193 nm UV, and are experimentally using 13.5 nm UV for extreme ultraviolet lithography.

Polymers[edit]

Electronic components that require clear transparency for light to exit or enter (photo voltaic panels and sensors) can be potted using acrylic resins that are cured using UV light energy. The advantages are low VOC emissions and rapid curing.

Effects of UV on finished surfaces in 0, 20 and 43 hours.

Certain inks, coatings, and adhesives are formulated with photoinitiators and resins. When exposed to UV light, polymerization occurs, and so the adhesives harden or cure, usually within a few seconds. Applications include glass and plastic bonding, optical fiber coatings, the coating of flooring, UV Coating and paper finishes in offset printing, dental fillings, and decorative finger nail "gels".

UV sources for UV curing applications include UV lamps, UV LEDs, and Excimer flash lamps. Fast processes such as flexo or offset printing require high-intensity light focused via reflectors onto a moving substrate and medium so high-pressure Hg (mercury) or Fe (iron, doped)-based bulbs are used, energized with electric arcs or microwaves. Lower-power fluorescent lamps and LEDs can be used for static applications. Small high-pressure lamps can have light focused and transmitted to the work area via liquid-filled or fiber-optic light guides.

The impact of UV on polymers is used for modification of the (roughness and hydrophobicity) of polymer surfaces. For example, a poly(methyl methacrylate) surface can be smoothed by vacuum ultraviolet.[51]

UV radiation is useful in preparing low-surface-energy polymers for adhesives. Polymers exposed to UV light will oxidize, thus raising the surface energy of the polymer. Once the surface energy of the polymer has been raised, the bond between the adhesive and the polymer is stronger.

Biology-related uses[edit]

Air purification[edit]

Using a catalytic chemical reaction from titanium dioxide and UVC light exposure, oxidation of organic matter converts pathogens, pollens, and mold spores into harmless inert byproducts. The cleansing mechanism of UV is a photochemical process. Contaminants in the indoor environment are almost entirely organic carbon-based compounds, which break down when exposed to high-intensity UV at 240 to 280 nm. Short-wave ultraviolet light can destroy DNA in living microorganisms.[citation needed] UVC's effectiveness is directly related to intensity and exposure time.

UV light has also been shown to reduce gaseous contaminants such as carbon monoxide and VOCs.[52][53][54] UV lamps radiating at 184 and 254 nm can remove low concentrations of hydrocarbons and carbon monoxide, if the air is recycled between the room and the lamp chamber. This arrangement prevents the introduction of ozone into the treated air. Likewise, air may be treated by passing by a single UV source operating at 184 nm and passed over iron pentaoxide to remove the ozone produced by the UV lamp.

Sterilization and disinfection[edit]

A low-pressure mercury vapor discharge tube floods the inside of a hood with shortwave UV light when not in use, sterilizing microbiological contaminants from irradiated surfaces.

Ultraviolet lamps are used to sterilize workspaces and tools used in biology laboratories and medical facilities. Commercially available low-pressure mercury-vapor lamps emit about 86% of their light at 254 nanometers (nm), which is near one of the peaks of the germicidal effectiveness curve. UV light at these germicidal wavelengths damage a microorganism's DNA so that it cannot reproduce, making it harmless, (even though the organism may not be killed). Since microorganisms can be shielded from ultraviolet light in small cracks and other shaded areas, these lamps are used only as a supplement to other sterilization techniques.

Disinfection using UV radiation is commonly used in wastewater treatment applications and is finding an increased usage in municipal drinking water treatment. Many bottlers of spring water use UV disinfection equipment to sterilize their water. Solar water disinfection[55] has been researched for cheaply treating contaminated water using natural sunlight. The UV-A irradiation and increased water temperature kill organisms in the water.

Ultraviolet radiation is used in several food processes to kill unwanted microorganisms. UV light can be used to pasteurize fruit juices by flowing the juice over a high-intensity ultraviolet light source.[56] The effectiveness of such a process depends on the UV absorbance of the juice.

Pulsed light (PL) is a technique of killing microorganisms on surfaces using pulses of an intense broad spectrum, rich in UV-C between 200 and 280 nm. Pulsed light works with Xenon flash lamps that can produce flashes several times per second. Disinfection robots use pulsed UV light [57][58]

Biological[edit]

Some animals, including birds, reptiles, and insects such as bees, can see near-ultraviolet light. Many fruits, flowers, and seeds stand out more strongly from the background in ultraviolet wavelengths as compared to human color vision. Scorpions glow or take on a yellow to green color under UV illumination, thus assisting in the control of these arachnids. Many birds have patterns in their plumage that are invisible at usual wavelengths but observable in ultraviolet, and the urine and other secretions of some animals, including dogs, cats, and human beings, is much easier to spot with ultraviolet. Urine trails of rodents can be detected by pest control technicians for proper treatment of infested dwellings.

Butterflies use ultraviolet as a communication system for sex recognition and mating behavior. For example, in the Colias eurytheme butterfly, males rely on visual cues to locate and identify females. Instead of using chemical stimuli to find mates, males are attracted to the ultraviolet-absorbing color of female hind wings.[59]

Many insects use the ultraviolet wavelength emissions from celestial objects as references for flight navigation. A local ultraviolet emitter will normally disrupt the navigation process and will eventually attract the flying insect.

Entomologist using a UV light for collecting beetles in the Paraguayan Chaco.

The Green Fluorescent Protein (GFP) is often used in genetics as a marker. Many substances, such as proteins, have significant light absorption bands in the ultraviolet that are of interest in biochemistry and related fields. UV-capable spectrophotometers are common in such laboratories.

Ultraviolet traps called bug zappers are used to eliminate various small flying insects. They are attracted to the UV light, and are killed using an electric shock, or trapped once they come into contact with the device. Different designs of ultraviolet light traps are also used by entomologists for collecting nocturnal insects during faunistic survey studies.

Therapy[edit]

Ultraviolet radiation is helpful in the treatment of skin conditions such as psoriasis and vitiligo. Exposure to UVA light while the skin is hyper-photosensitive by taking psoralens is an effective treatment for psoriasis. Due to the potential of psoralens to cause damage to the liver, PUVA therapy may be used only a limited number of times over a patient's lifetime.

UVB phototherapy does not require additional medications or topical preparations for the therapeutic benefit; only the light exposure is needed. However, phototherapy can be effective when used in conjunction with certain topical treatments such as anthralin, coal tar, and Vitamin A and D derivatives, or systemic treatments such as methotrexate and soriatane.[60]

Herpetology[edit]

Reptiles need long-wave UVA light for synthesis of vitamin D, which in turn is needed to metabolize calcium for bone and egg production. Thus, in a typical reptile enclosure, a fluorescent UV lamp should be available for vitamin D synthesis. This should be combined with the provision of heat for basking, either by the same lamp or another. Certain reptiles such as Bearded Dragons need both UVA and UVB light.

Evolutionary significance[edit]

Evolution of early reproductive proteins and enzymes is attributed in modern models of evolutionary theory to ultraviolet light. UVB light causes thymine base pairs next to each other in genetic sequences to bond together into thymine dimers, a disruption in the strand that reproductive enzymes cannot copy. This leads to frameshifting during genetic replication and protein synthesis, usually killing the cell. Before formation of the UV-blocking ozone layer, when early prokaryotes approached the surface of the ocean, they almost invariably died out. The few that survived had developed enzymes that monitored the genetic material and removed thymine dimers by nucleotide excision repair enzymes. Many enzymes and proteins involved in modern mitosis and meiosis are similar to repair enzymes, and are believed to be evolved modifications of the enzymes originally used to overcome DNA damages caused by UV light.[61]

See also[edit]

References[edit]

  1. ^ Lynch, David K.; Livingston, William Charles (2001). Color and Light in Nature (2nd ed.). Cambridge, UK: Cambridge University Press. p. 231. ISBN 978-0-521-77504-5. Retrieved 12 October 2013. Limits of the eye's overall range of sensitivity extends from about 310 to 1050 nanometers 
  2. ^ Dash, Madhab Chandra; Dash, Satya Prakash (2009). Fundamentals Of Ecology 3E. Tata McGraw-Hill Education. p. 213. ISBN 978-1-259-08109-5. Retrieved 18 October 2013. Normally the human eye responds to light rays from 390 to 760 nm. This can be extended to a range of 310 to 1,050 nm under artificial conditions. 
  3. ^ "Reference Solar Spectral Irradiance: Air Mass 1.5". Retrieved 2009-11-12. 
  4. ^ Haigh, Joanna D. (2007). "The Sun and the Earth's Climate: Absorption of solar spectral radiation by the atmosphere". Living Reviews in Solar Physics 4 (2). Retrieved July 12, 2014. 
  5. ^ "On a new Imponderable Substance and on a Class of Chemical Rays analogous to the rays of Dark Heat", J.W. Draper, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1842, LXXX, pp.453-461
  6. ^ "Description of the Tithonometer", J.W. Draper, The Practical Mechanic and Engineer's Magazine, January 1844, pp.122-127
  7. ^ Beeson, Steven; Mayer, James W. "12.2.2 Discoveries beyond the visible". Patterns of light: chasing the spectrum from Aristotle to LEDs. New York: Springer. p. 149. ISBN 978-0-387-75107-8. 
  8. ^ Hockberger, Philip E. (2002). "A history of ultraviolet photobiology for humans, animals and microorganisms". Photochem. Photobiol. 76 (6): 561–79. doi:10.1562/0031-8655(2002)0760561AHOUPF2.0.CO2. PMID 12511035. (subscription required (help)). Closed access
  9. ^ James Bolton, Christine Colton, The Ultraviolet Disinfection Handbook, American Water Works Association, 2008 ISBN 978 1 58321 584 5, pp. 3-4
  10. ^ The ozone layer protects humans from this. Lyman, T. (1914). "Victor Schumann". Astrophysical Journal 38: 1–4. Bibcode:1914ApJ....39....1L. doi:10.1086/142050. 
  11. ^ "ISO 21348 Definitions of Solar Irradiance Spectral Categories" (PDF). 
  12. ^ "Gullikson, Korde, Canfield, Vest, " Stable Silicon Photodiodes for absolute intensity measurements in the VU V and soft x-ray regions", Jrnl of Elec. Spect. and Related Phenomena 80(1996) 313–316" (PDF). Ts.nist.gov. Archived from the original (PDF) on 2009-01-09. Retrieved 2011-11-08. 
  13. ^ M A Mainster (2006). "Violet and blue light blocking intraocular lenses: photoprotection versus photoreception". British Journal of Ophthalmology 90 (6): 784–792. doi:10.1136/bjo.2005.086553. PMC 1860240. PMID 16714268. 
  14. ^ David Hambling (29 May 2002). "Let the light shine in". The Guardian. Retrieved 2 January 2015. 
  15. ^ Stark, W.S.; Tan, K.E.W.P. (September 1982). "Ultraviolet Light: Photosensitivity and Other Effects on the Visual System". Photochemistry and Photobiology 36 (3): 371–380. doi:10.1111/j.1751-1097.1982.tb04389.x. Retrieved 2 January 2015. 
  16. ^ Solar radiation
  17. ^ Solar constant at ground level
  18. ^ "Reference Solar Spectral Irradiance: Air Mass 1.5". Retrieved 2009-11-12. 
  19. ^ Understanding UVA and UVB, retrieved 2012-04-30 
  20. ^ Burnett, M. E. and Wang, S. Q. (2011), Current sunscreen controversies: a critical review. Photodermatology, Photoimmunology & Photomedicine, 27: 58–67
  21. ^ ELLIE ZOLFAGHARIFARD (15 October 2013). "How medieval stained-glass is creating the ultimate SPACE camera: Nanoparticles used in church windows will help scientists see Mars' true colours under extreme UV light". 
  22. ^ "Soda Lime Glass Transmission Curve". 
  23. ^ "B270-Superwite Glass Transmission Curve". 
  24. ^ "Selected Float Glass Transmission Curve". 
  25. ^ Insect-O-Cutor
  26. ^ Klose, Jules Z.; Bridges, J. Mervin; Ott, William R. (June 1987). "NBS Measurement Services: Radiometric Standards in the VUV" (PDF). NBS Special publication (US Dept. of Commerce) (250-3). 
  27. ^ "UV Laser Diode: 375 nm Center Wavelength". Product Catalog. United States: Thorlabs. Retrieved 14 December 2014. 
  28. ^ Marshall, Chris (1996). "A simple, reliable ultraviolet laser: the Ce:LiSAF". Lawrence Livermore National Laboratory. Retrieved 2008-01-11. 
  29. ^ a b Strauss, CEM; Funk, DJ (1991). "Broadly tunable difference-frequency generation of VUV using two-photon resonances in H2 and Kr". Optics Lett. 16 (15): 1192. 
  30. ^ EUV chip fab almost here
  31. ^ "Vitamin D". Oregon State University. Retrieved 2011-11-08. 
  32. ^ Navy Ultraviolet Radiation Guide
  33. ^ "Health effects of UV radiation". World Health Organization. 
  34. ^ Torma, H; Berne, B; Vahlquist, A (1988). "UV irradiation and topical vitamin A modulate retinol esterification in hairless mouse epidermis". Acta Derm. Venereol. 68 (4): 291–299. PMID 2459873. 
  35. ^ Bernstein C, Bernstein H, Payne CM, Garewal H (June 2002). "DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis". Mutat. Res. 511 (2): 145–78. doi:10.1016/S1383-5742(02)00009-1. PMID 12052432. 
  36. ^ Xu, C.; Green, Adele; Parisi, Alfio; Parsons, Peter G (2001). "Photosensitization of the Sunscreen Octyl p-Dimethylaminobenzoate b UVA in Human Melanocytes but not in Keratinocytes.". Photochemistry and Photobiology 73 (6): 600–604. doi:10.1562/0031-8655(2001)073<0600:POTSOP>2.0.CO;2. PMID 11421064. 
  37. ^ Knowland, John; McKenzie, Edward A.; McHugh, Peter J.; Cridland, Nigel A. (1993). "Sunlight-induced mutagenicity of a common sunscreen ingredient.". FEBS Letters 324 (3): 309–313. doi:10.1016/0014-5793(93)80141-G. PMID 8405372. 
  38. ^ European Guidelines for Photodermatoses > 2 Photoaggravated Disorders at European Dermatology Forum
  39. ^ Nolan, Timothy M.; DiGirolamo, Nick; Sachdev, Nitin H.; et al. (2003). "The Role of Ultraviolet Irradiation and Heparin-Binding Epidermal Growth Factor-Like Growth Factor in the Pathogenesis of Pterygium". Am. J. Pathol. 162 (2): 567–74. doi:10.1016/S0002-9440(10)63850-3. PMC 1851157. PMID 12547714. open access publication - free to read
  40. ^ Di Girolamo, Nick; Coroneo, Minas; Wakefield, Denis (1 August 2005). "Epidermal Growth Factor Receptor Signaling Is Partially Responsible for the Increased Matrix Metalloproteinase-1 Expression in Ocular Epithelial Cells after UVB Radiation". Am. J. Pathol. 167 (2): 489–503. doi:10.1016/S0002-9440(10)62992-6. PMC 1603570. PMID 16049334. open access publication - free to read
  41. ^ s-et.com at the Wayback Machine (archived August 20, 2008)
  42. ^ "Ultraviolet Light, UV Rays, What is Ultraviolet, UV Light Bulbs, Fly Trap". Pestproducts.com. Retrieved 2011-11-08. 
  43. ^ "Corona – The Daytime UV Inspection Magazine". 
  44. ^ "Pepper Spray FAQ". Archived from the original on 16 July 2015. 
  45. ^ Springer, E; Almog, J; Frank, A; Ziv, Z; Bergman, P; Gui Quang, W (1994). "Detection of dry bodily fluids by inherent short wavelength UV luminescence: Preliminary results.". Forensic Sci Int 66 (2): 89–94. doi:10.1016/0379-0738(94)90332-8. Retrieved 2012-02-14. 
  46. ^ Anja Fiedler, Mark Benecke; et al. "Detection of Semen (Human and Boar) and Saliva on Fabrics by a Very High Powered UV-/VIS-Light Source" (PDF). Retrieved 2009-12-10. 
  47. ^ "Digital Photography of Documents". wells-geneaology.org.uk. 
  48. ^ N. E. Battikha (ed), The Condensed Handbook of Measurement and Control 3rd Ed. ISA 2007 ISBN 1-55617-995-2, pp. 65-66
  49. ^ Mervin Fingas (ed.) Oil Spill Science and Technology Elsevier, 2011 ISBN 978-1-85617-943-0 pp. 123-124
  50. ^ "Deep UV Photoresists". Archived from the original on 2006-03-12. 
  51. ^ R. V. Lapshin, A. P. Alekhin, A. G. Kirilenko, S. L. Odintsov, V. A. Krotkov (2010). "Vacuum ultraviolet smoothing of nanometer-scale asperities of poly(methyl methacrylate) surface" (PDF). Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques (Russia: Pleiades Publishing) 4 (1): 1–11. doi:10.1134/S1027451010010015. ISSN 1027-4510.  (Russian translation is available).
  52. ^ Scott, K.J.; Wills, R.R.H.; Patterson, B.D. (1971). "Removal by ultra-violet lamp of ethylene and other hydrocarbons produced by bananas". Journal of the Science of Food and Agriculture 22 (9): 496–7. doi:10.1002/jsfa.2740220916. 
  53. ^ Scott, KJ; Wills, RBH (1973). "Atmospheric pollutants destroyed in an ultra violet scrubber.". Laboratory Practice 22 (2): 103–6. PMID 4688707. 
  54. ^ Shorter, AJ; Scott, KJ (1986). Lebensm-Wiss u Technology 19: 176–9.  Missing or empty |title= (help)
  55. ^ "Solar Water Disinfection". Sodis.ch. 2 April 2011. Retrieved 2011-11-08. 
  56. ^ Rulfsorchard.com Archived 13 November 2013 at the Wayback Machine
  57. ^ Ebola-Zapping Robots Unleashed in Hospitals
  58. ^ Xenex Robot
  59. ^ Silberglied, Robert E.; Taylor, Orley R. (1978). "Ultraviolet Reflection and Its Behavioral Role in the Courtship of the Sulfur Butterflies Colias eurytheme and C. philodice (Lepidoptera, Pieridae)". Behavioral Ecology and Sociobiology 3 (3): 203–43. doi:10.1007/bf00296311. 
  60. ^ "UVB Phototherapy". National Psoriasis Foundation, USA. Archived from the original (php) on 22 June 2007. Retrieved 2007-09-23. 
  61. ^ Margulis, Lynn and Sagan, Dorion (1986). "Origins of Sex: Three Billion Years of Genetic Recombination" (book). 1. Yale University Press. ISBN 978-0-300-04619-9. 

Further reading[edit]